comparison toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/arhmm1.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 % Make an HMM with autoregressive Gaussian observations (switching AR model)
2 % X1 -> X2
3 % | |
4 % v v
5 % Y1 -> Y2
6
7 seed = 0;
8 rand('state', seed);
9 randn('state', seed);
10
11 intra = zeros(2);
12 intra(1,2) = 1;
13 inter = zeros(2);
14 inter(1,1) = 1;
15 inter(2,2) = 1;
16 n = 2;
17
18 Q = 2; % num hidden states
19 O = 2; % size of observed vector
20
21 ns = [Q O];
22 dnodes = 1;
23 onodes = [2];
24 bnet = mk_dbn(intra, inter, ns, 'discrete', dnodes, 'observed', onodes);
25
26 bnet.CPD{1} = tabular_CPD(bnet, 1);
27 bnet.CPD{2} = gaussian_CPD(bnet, 2);
28 bnet.CPD{3} = tabular_CPD(bnet, 3);
29 bnet.CPD{4} = gaussian_CPD(bnet, 4);
30
31
32 T = 10; % fixed length sequences
33
34 engine = {};
35 %engine{end+1} = hmm_inf_engine(bnet);
36 engine{end+1} = jtree_unrolled_dbn_inf_engine(bnet, T);
37 %engine{end+1} = smoother_engine(hmm_2TBN_inf_engine(bnet));
38 %engine{end+1} = smoother_engine(jtree_2TBN_inf_engine(bnet));
39
40 inf_time = cmp_inference_dbn(bnet, engine, T, 'check_ll',1);
41 learning_time = cmp_learning_dbn(bnet, engine, T, 'check_ll', 1);
42