Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/Kalman/sample_lds.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function [x,y] = sample_lds(F, H, Q, R, init_state, T, models, G, u) | |
2 % SAMPLE_LDS Simulate a run of a (switching) stochastic linear dynamical system. | |
3 % [x,y] = switching_lds_draw(F, H, Q, R, init_state, models, G, u) | |
4 % | |
5 % x(t+1) = F*x(t) + G*u(t) + w(t), w ~ N(0, Q), x(0) = init_state | |
6 % y(t) = H*x(t) + v(t), v ~ N(0, R) | |
7 % | |
8 % Input: | |
9 % F(:,:,i) - the transition matrix for the i'th model | |
10 % H(:,:,i) - the observation matrix for the i'th model | |
11 % Q(:,:,i) - the transition covariance for the i'th model | |
12 % R(:,:,i) - the observation covariance for the i'th model | |
13 % init_state(:,i) - the initial mean for the i'th model | |
14 % T - the num. time steps to run for | |
15 % | |
16 % Optional inputs: | |
17 % models(t) - which model to use at time t. Default = ones(1,T) | |
18 % G(:,:,i) - the input matrix for the i'th model. Default = 0. | |
19 % u(:,t) - the input vector at time t. Default = zeros(1,T) | |
20 % | |
21 % Output: | |
22 % x(:,t) - the hidden state vector at time t. | |
23 % y(:,t) - the observation vector at time t. | |
24 | |
25 | |
26 if ~iscell(F) | |
27 F = num2cell(F, [1 2]); | |
28 H = num2cell(H, [1 2]); | |
29 Q = num2cell(Q, [1 2]); | |
30 R = num2cell(R, [1 2]); | |
31 end | |
32 | |
33 M = length(F); | |
34 %T = length(models); | |
35 | |
36 if nargin < 7, | |
37 models = ones(1,T); | |
38 end | |
39 if nargin < 8, | |
40 G = num2cell(repmat(0, [1 1 M])); | |
41 u = zeros(1,T); | |
42 end | |
43 | |
44 [os ss] = size(H{1}); | |
45 state_noise_samples = cell(1,M); | |
46 obs_noise_samples = cell(1,M); | |
47 for i=1:M | |
48 state_noise_samples{i} = sample_gaussian(zeros(length(Q{i}),1), Q{i}, T)'; | |
49 obs_noise_samples{i} = sample_gaussian(zeros(length(R{i}),1), R{i}, T)'; | |
50 end | |
51 | |
52 x = zeros(ss, T); | |
53 y = zeros(os, T); | |
54 | |
55 m = models(1); | |
56 x(:,1) = init_state(:,m); | |
57 y(:,1) = H{m}*x(:,1) + obs_noise_samples{m}(:,1); | |
58 | |
59 for t=2:T | |
60 m = models(t); | |
61 x(:,t) = F{m}*x(:,t-1) + G{m}*u(:,t-1) + state_noise_samples{m}(:,t); | |
62 y(:,t) = H{m}*x(:,t) + obs_noise_samples{m}(:,t); | |
63 end | |
64 | |
65 |