Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/Kalman/eval_AR_perf.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function [ypred, ll, mse] = eval_AR_perf(coef, C, y, model) | |
2 % Evaluate the performance of an AR model. | |
3 % | |
4 % Inputs | |
5 % coef(:,:,k,m) - coef. matrix to use for k steps back, model m | |
6 % C(:,:,m) - cov. matrix for model m | |
7 % y(:,t) - observation at time t | |
8 % model(t) - which model to use at time t (defaults to 1 if not specified) | |
9 % | |
10 % Outputs | |
11 % ypred(:,t) - the predicted value of y at t based on the evidence thru t-1. | |
12 % ll - log likelihood | |
13 % mse - mean squared error = sum_t d_t . d_t, where d_t = pred(y_t) - y(t) | |
14 | |
15 [s T] = size(y); | |
16 k = size(coef, 3); | |
17 M = size(coef, 4); | |
18 | |
19 if nargin<4, model = ones(1, T); end | |
20 | |
21 ypred = zeros(s, T); | |
22 ypred(:, 1:k) = y(:, 1:k); | |
23 mse = 0; | |
24 ll = 0; | |
25 for j=1:M | |
26 c(j) = log(normal_coef(C(:,:,j))); | |
27 invC(:,:,j) = inv(C(:,:,j)); | |
28 end | |
29 coef = reshape(coef, [s s*k M]); | |
30 | |
31 for t=k+1:T | |
32 m = model(t-k); | |
33 past = y(:,t-1:-1:t-k); | |
34 ypred(:,t) = coef(:, :, m) * past(:); | |
35 d = ypred(:,t) - y(:,t); | |
36 mse = mse + d' * d; | |
37 ll = ll + c(m) - 0.5*(d' * invC(:,:,m) * d); | |
38 end | |
39 mse = mse / (T-k+1); | |
40 |