Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/KPMtools/plotgauss2d.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function h=plotgauss2d(mu, Sigma) | |
2 % PLOTGAUSS2D Plot a 2D Gaussian as an ellipse with optional cross hairs | |
3 % h=plotgauss2(mu, Sigma) | |
4 % | |
5 | |
6 h = plotcov2(mu, Sigma); | |
7 return; | |
8 | |
9 %%%%%%%%%%%%%%%%%%%%%%%% | |
10 | |
11 % PLOTCOV2 - Plots a covariance ellipse with major and minor axes | |
12 % for a bivariate Gaussian distribution. | |
13 % | |
14 % Usage: | |
15 % h = plotcov2(mu, Sigma[, OPTIONS]); | |
16 % | |
17 % Inputs: | |
18 % mu - a 2 x 1 vector giving the mean of the distribution. | |
19 % Sigma - a 2 x 2 symmetric positive semi-definite matrix giving | |
20 % the covariance of the distribution (or the zero matrix). | |
21 % | |
22 % Options: | |
23 % 'conf' - a scalar between 0 and 1 giving the confidence | |
24 % interval (i.e., the fraction of probability mass to | |
25 % be enclosed by the ellipse); default is 0.9. | |
26 % 'num-pts' - the number of points to be used to plot the | |
27 % ellipse; default is 100. | |
28 % | |
29 % This function also accepts options for PLOT. | |
30 % | |
31 % Outputs: | |
32 % h - a vector of figure handles to the ellipse boundary and | |
33 % its major and minor axes | |
34 % | |
35 % See also: PLOTCOV3 | |
36 | |
37 % Copyright (C) 2002 Mark A. Paskin | |
38 | |
39 function h = plotcov2(mu, Sigma, varargin) | |
40 | |
41 if size(Sigma) ~= [2 2], error('Sigma must be a 2 by 2 matrix'); end | |
42 if length(mu) ~= 2, error('mu must be a 2 by 1 vector'); end | |
43 | |
44 [p, ... | |
45 n, ... | |
46 plot_opts] = process_options(varargin, 'conf', 0.9, ... | |
47 'num-pts', 100); | |
48 h = []; | |
49 holding = ishold; | |
50 if (Sigma == zeros(2, 2)) | |
51 z = mu; | |
52 else | |
53 % Compute the Mahalanobis radius of the ellipsoid that encloses | |
54 % the desired probability mass. | |
55 k = conf2mahal(p, 2); | |
56 % The major and minor axes of the covariance ellipse are given by | |
57 % the eigenvectors of the covariance matrix. Their lengths (for | |
58 % the ellipse with unit Mahalanobis radius) are given by the | |
59 % square roots of the corresponding eigenvalues. | |
60 if (issparse(Sigma)) | |
61 [V, D] = eigs(Sigma); | |
62 else | |
63 [V, D] = eig(Sigma); | |
64 end | |
65 % Compute the points on the surface of the ellipse. | |
66 t = linspace(0, 2*pi, n); | |
67 u = [cos(t); sin(t)]; | |
68 w = (k * V * sqrt(D)) * u; | |
69 z = repmat(mu, [1 n]) + w; | |
70 % Plot the major and minor axes. | |
71 L = k * sqrt(diag(D)); | |
72 h = plot([mu(1); mu(1) + L(1) * V(1, 1)], ... | |
73 [mu(2); mu(2) + L(1) * V(2, 1)], plot_opts{:}); | |
74 hold on; | |
75 h = [h; plot([mu(1); mu(1) + L(2) * V(1, 2)], ... | |
76 [mu(2); mu(2) + L(2) * V(2, 2)], plot_opts{:})]; | |
77 end | |
78 | |
79 h = [h; plot(z(1, :), z(2, :), plot_opts{:})]; | |
80 if (~holding) hold off; end | |
81 | |
82 %%%%%%%%%%%% | |
83 | |
84 % CONF2MAHAL - Translates a confidence interval to a Mahalanobis | |
85 % distance. Consider a multivariate Gaussian | |
86 % distribution of the form | |
87 % | |
88 % p(x) = 1/sqrt((2 * pi)^d * det(C)) * exp((-1/2) * MD(x, m, inv(C))) | |
89 % | |
90 % where MD(x, m, P) is the Mahalanobis distance from x | |
91 % to m under P: | |
92 % | |
93 % MD(x, m, P) = (x - m) * P * (x - m)' | |
94 % | |
95 % A particular Mahalanobis distance k identifies an | |
96 % ellipsoid centered at the mean of the distribution. | |
97 % The confidence interval associated with this ellipsoid | |
98 % is the probability mass enclosed by it. Similarly, | |
99 % a particular confidence interval uniquely determines | |
100 % an ellipsoid with a fixed Mahalanobis distance. | |
101 % | |
102 % If X is an d dimensional Gaussian-distributed vector, | |
103 % then the Mahalanobis distance of X is distributed | |
104 % according to the Chi-squared distribution with d | |
105 % degrees of freedom. Thus, the Mahalanobis distance is | |
106 % determined by evaluating the inverse cumulative | |
107 % distribution function of the chi squared distribution | |
108 % up to the confidence value. | |
109 % | |
110 % Usage: | |
111 % | |
112 % m = conf2mahal(c, d); | |
113 % | |
114 % Inputs: | |
115 % | |
116 % c - the confidence interval | |
117 % d - the number of dimensions of the Gaussian distribution | |
118 % | |
119 % Outputs: | |
120 % | |
121 % m - the Mahalanobis radius of the ellipsoid enclosing the | |
122 % fraction c of the distribution's probability mass | |
123 % | |
124 % See also: MAHAL2CONF | |
125 | |
126 % Copyright (C) 2002 Mark A. Paskin | |
127 | |
128 function m = conf2mahal(c, d) | |
129 | |
130 m = chi2inv(c, d); % matlab stats toolbox |