comparison toolboxes/FullBNT-1.0.7/KPMstats/mixgauss_init.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function [mu, Sigma, weights] = mixgauss_init(M, data, cov_type, method)
2 % MIXGAUSS_INIT Initial parameter estimates for a mixture of Gaussians
3 % function [mu, Sigma, weights] = mixgauss_init(M, data, cov_type. method)
4 %
5 % INPUTS:
6 % data(:,t) is the t'th example
7 % M = num. mixture components
8 % cov_type = 'full', 'diag' or 'spherical'
9 % method = 'rnd' (choose centers randomly from data) or 'kmeans' (needs netlab)
10 %
11 % OUTPUTS:
12 % mu(:,k)
13 % Sigma(:,:,k)
14 % weights(k)
15
16 if nargin < 4, method = 'kmeans'; end
17
18 [d T] = size(data);
19 data = reshape(data, d, T); % in case it is data(:, t, sequence_num)
20
21 switch method
22 case 'rnd',
23 C = cov(data');
24 Sigma = repmat(diag(diag(C))*0.5, [1 1 M]);
25 % Initialize each mean to a random data point
26 indices = randperm(T);
27 mu = data(:,indices(1:M));
28 weights = normalise(ones(M,1));
29 case 'kmeans',
30 mix = gmm(d, M, cov_type);
31 options = foptions;
32 max_iter = 5;
33 options(1) = -1; % be quiet!
34 options(14) = max_iter;
35 mix = gmminit(mix, data', options);
36 mu = reshape(mix.centres', [d M]);
37 weights = mix.priors(:);
38 for m=1:M
39 switch cov_type
40 case 'diag',
41 Sigma(:,:,m) = diag(mix.covars(m,:));
42 case 'full',
43 Sigma(:,:,m) = mix.covars(:,:,m);
44 case 'spherical',
45 Sigma(:,:,m) = mix.covars(m) * eye(d);
46 end
47 end
48 end
49