Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/KPMstats/mixgauss_Mstep.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function [mu, Sigma] = mixgauss_Mstep(w, Y, YY, YTY, varargin) | |
2 % MSTEP_COND_GAUSS Compute MLEs for mixture of Gaussians given expected sufficient statistics | |
3 % function [mu, Sigma] = Mstep_cond_gauss(w, Y, YY, YTY, varargin) | |
4 % | |
5 % We assume P(Y|Q=i) = N(Y; mu_i, Sigma_i) | |
6 % and w(i,t) = p(Q(t)=i|y(t)) = posterior responsibility | |
7 % See www.ai.mit.edu/~murphyk/Papers/learncg.pdf. | |
8 % | |
9 % INPUTS: | |
10 % w(i) = sum_t w(i,t) = responsibilities for each mixture component | |
11 % If there is only one mixture component (i.e., Q does not exist), | |
12 % then w(i) = N = nsamples, and | |
13 % all references to i can be replaced by 1. | |
14 % YY(:,:,i) = sum_t w(i,t) y(:,t) y(:,t)' = weighted outer product | |
15 % Y(:,i) = sum_t w(i,t) y(:,t) = weighted observations | |
16 % YTY(i) = sum_t w(i,t) y(:,t)' y(:,t) = weighted inner product | |
17 % You only need to pass in YTY if Sigma is to be estimated as spherical. | |
18 % | |
19 % Optional parameters may be passed as 'param_name', param_value pairs. | |
20 % Parameter names are shown below; default values in [] - if none, argument is mandatory. | |
21 % | |
22 % 'cov_type' - 'full', 'diag' or 'spherical' ['full'] | |
23 % 'tied_cov' - 1 (Sigma) or 0 (Sigma_i) [0] | |
24 % 'clamped_cov' - pass in clamped value, or [] if unclamped [ [] ] | |
25 % 'clamped_mean' - pass in clamped value, or [] if unclamped [ [] ] | |
26 % 'cov_prior' - Lambda_i, added to YY(:,:,i) [0.01*eye(d,d,Q)] | |
27 % | |
28 % If covariance is tied, Sigma has size d*d. | |
29 % But diagonal and spherical covariances are represented in full size. | |
30 | |
31 [cov_type, tied_cov, clamped_cov, clamped_mean, cov_prior, other] = ... | |
32 process_options(varargin,... | |
33 'cov_type', 'full', 'tied_cov', 0, 'clamped_cov', [], 'clamped_mean', [], ... | |
34 'cov_prior', []); | |
35 | |
36 [Ysz Q] = size(Y); | |
37 N = sum(w); | |
38 if isempty(cov_prior) | |
39 %cov_prior = zeros(Ysz, Ysz, Q); | |
40 %for q=1:Q | |
41 % cov_prior(:,:,q) = 0.01*cov(Y(:,q)'); | |
42 %end | |
43 cov_prior = repmat(0.01*eye(Ysz,Ysz), [1 1 Q]); | |
44 end | |
45 %YY = reshape(YY, [Ysz Ysz Q]) + cov_prior; % regularize the scatter matrix | |
46 YY = reshape(YY, [Ysz Ysz Q]); | |
47 | |
48 % Set any zero weights to one before dividing | |
49 % This is valid because w(i)=0 => Y(:,i)=0, etc | |
50 w = w + (w==0); | |
51 | |
52 if ~isempty(clamped_mean) | |
53 mu = clamped_mean; | |
54 else | |
55 % eqn 6 | |
56 %mu = Y ./ repmat(w(:)', [Ysz 1]);% Y may have a funny size | |
57 mu = zeros(Ysz, Q); | |
58 for i=1:Q | |
59 mu(:,i) = Y(:,i) / w(i); | |
60 end | |
61 end | |
62 | |
63 if ~isempty(clamped_cov) | |
64 Sigma = clamped_cov; | |
65 return; | |
66 end | |
67 | |
68 if ~tied_cov | |
69 Sigma = zeros(Ysz,Ysz,Q); | |
70 for i=1:Q | |
71 if cov_type(1) == 's' | |
72 % eqn 17 | |
73 s2 = (1/Ysz)*( (YTY(i)/w(i)) - mu(:,i)'*mu(:,i) ); | |
74 Sigma(:,:,i) = s2 * eye(Ysz); | |
75 else | |
76 % eqn 12 | |
77 SS = YY(:,:,i)/w(i) - mu(:,i)*mu(:,i)'; | |
78 if cov_type(1)=='d' | |
79 SS = diag(diag(SS)); | |
80 end | |
81 Sigma(:,:,i) = SS; | |
82 end | |
83 end | |
84 else % tied cov | |
85 if cov_type(1) == 's' | |
86 % eqn 19 | |
87 s2 = (1/(N*Ysz))*(sum(YTY,2) + sum(diag(mu'*mu) .* w)); | |
88 Sigma = s2*eye(Ysz); | |
89 else | |
90 SS = zeros(Ysz, Ysz); | |
91 % eqn 15 | |
92 for i=1:Q % probably could vectorize this... | |
93 SS = SS + YY(:,:,i)/N - mu(:,i)*mu(:,i)'; | |
94 end | |
95 if cov_type(1) == 'd' | |
96 Sigma = diag(diag(SS)); | |
97 else | |
98 Sigma = SS; | |
99 end | |
100 end | |
101 end | |
102 | |
103 if tied_cov | |
104 Sigma = repmat(Sigma, [1 1 Q]); | |
105 end | |
106 Sigma = Sigma + cov_prior; |