comparison toolboxes/FullBNT-1.0.7/KPMstats/cwr_predict.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function [mu, Sigma, weights, mask] = cwr_predict(cwr, X, mask_data)
2 % CWR_PREDICT cluster weighted regression: predict Y given X
3 % function [mu, Sigma] = cwr_predict(cwr, X)
4 %
5 % mu(:,t) = E[Y|X(:,t)] = sum_c P(c | X(:,t)) E[Y|c, X(:,t)]
6 % Sigma(:,:,t) = Cov[Y|X(:,t)]
7 %
8 % [mu, Sigma, weights, mask] = cwr_predict(cwr, X, mask_data)
9 % mask(i) = sum_t sum_c p(mask_data(:,i) | X(:,t), c) P(c|X(:,t))
10 % This evaluates the predictive density on a set of points
11 % (This is only sensible if T=1, ie. X is a single vector)
12
13 [nx T] = size(X);
14 [ny nx nc] = size(cwr.weightsY);
15 mu = zeros(ny, T);
16 Sigma = zeros(ny, ny, T);
17
18 if nargout == 4
19 comp_mask = 1;
20 N = size(mask_data,2);
21 mask = zeros(N,1);
22 else
23 comp_mask = 0;
24 end
25
26 if nc==1
27 if isempty(cwr.weightsY)
28 mu = repmat(cwr.muY, 1, T);
29 Sigma = repmat(cwr.SigmaY, [1 1 T]);
30 else
31 mu = repmat(cwr.muY, 1, T) + cwr.weightsY * X;
32 Sigma = repmat(cwr.SigmaY, [1 1 T]);
33 %for t=1:T
34 % mu(:,t) = cwr.muY + cwr.weightsY*X(:,t);
35 % Sigma(:,:,t) = cwr.SigmaY;
36 %end
37 end
38 if comp_mask, mask = gaussian_prob(mask_data, mu, Sigma); end
39 weights = [];
40 return;
41 end
42
43
44 % likX(c,t) = p(x(:,t) | c)
45 likX = mixgauss_prob(X, cwr.muX, cwr.SigmaX);
46 weights = normalize(repmat(cwr.priorC, 1, T) .* likX, 1);
47 for t=1:T
48 mut = zeros(ny, nc);
49 for c=1:nc
50 mut(:,c) = cwr.muY(:,c) + cwr.weightsY(:,:,c)*X(:,t);
51 if comp_mask
52 mask = mask + gaussian_prob(mask_data, mut(:,c), cwr.SigmaY(:,:,c)) * weights(c);
53 end
54 end
55 %w = normalise(cwr.priorC(:) .* likX(:,t));
56 [mu(:,t), Sigma(:,:,t)] = collapse_mog(mut, cwr.SigmaY, weights(:,t));
57 end