Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/KPMstats/cwr_em.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function cwr = cwr_em(X, Y, nc, varargin) | |
2 % CWR_LEARN Fit the parameters of a cluster weighted regression model using EM | |
3 % function cwr = cwr_learn(X, Y, ...) | |
4 % | |
5 % X(:, t) is the t'th input example | |
6 % Y(:, t) is the t'th output example | |
7 % nc is the number of clusters | |
8 % | |
9 % Kevin Murphy, May 2003 | |
10 | |
11 [max_iter, thresh, cov_typeX, cov_typeY, clamp_weights, ... | |
12 muX, muY, SigmaX, SigmaY, weightsY, priorC, create_init_params, ... | |
13 cov_priorX, cov_priorY, verbose, regress, clamp_covX, clamp_covY] = process_options(... | |
14 varargin, 'max_iter', 10, 'thresh', 1e-2, 'cov_typeX', 'full', ... | |
15 'cov_typeY', 'full', 'clamp_weights', 0, ... | |
16 'muX', [], 'muY', [], 'SigmaX', [], 'SigmaY', [], 'weightsY', [], 'priorC', [], ... | |
17 'create_init_params', 1, 'cov_priorX', [], 'cov_priorY', [], 'verbose', 0, ... | |
18 'regress', 1, 'clamp_covX', 0, 'clamp_covY', 0); | |
19 | |
20 [nx N] = size(X); | |
21 [ny N2] = size(Y); | |
22 if N ~= N2 | |
23 error(sprintf('nsamples X (%d) ~= nsamples Y (%d)', N, N2)); | |
24 end | |
25 %if N < nx | |
26 % fprintf('cwr_em warning: dim X (%d) > nsamples X (%d)\n', nx, N); | |
27 %end | |
28 if (N < nx) & regress | |
29 fprintf('cwr_em warning: dim X = %d, nsamples X = %d\n', nx, N); | |
30 end | |
31 if (N < ny) | |
32 fprintf('cwr_em warning: dim Y = %d, nsamples Y = %d\n', ny, N); | |
33 end | |
34 if (nc > N) | |
35 error(sprintf('cwr_em: more centers (%d) than data', nc)) | |
36 end | |
37 | |
38 if nc==1 | |
39 % No latent variable, so there is a closed-form solution | |
40 w = 1/N; | |
41 WYbig = Y*w; | |
42 WYY = WYbig * Y'; | |
43 WY = sum(WYbig, 2); | |
44 WYTY = sum(diag(WYbig' * Y)); | |
45 cwr.priorC = 1; | |
46 cwr.SigmaX = []; | |
47 if ~regress | |
48 % This is just fitting an unconditional Gaussian | |
49 cwr.weightsY = []; | |
50 [cwr.muY, cwr.SigmaY] = ... | |
51 mixgauss_Mstep(1, WY, WYY, WYTY, ... | |
52 'cov_type', cov_typeY, 'cov_prior', cov_priorY); | |
53 % There is a much easier way... | |
54 assert(approxeq(cwr.muY, mean(Y'))) | |
55 assert(approxeq(cwr.SigmaY, cov(Y') + 0.01*eye(ny))) | |
56 else | |
57 % This is just linear regression | |
58 WXbig = X*w; | |
59 WXX = WXbig * X'; | |
60 WX = sum(WXbig, 2); | |
61 WXTX = sum(diag(WXbig' * X)); | |
62 WXY = WXbig * Y'; | |
63 [cwr.muY, cwr.SigmaY, cwr.weightsY] = ... | |
64 clg_Mstep(1, WY, WYY, WYTY, WX, WXX, WXY, ... | |
65 'cov_type', cov_typeY, 'cov_prior', cov_priorY); | |
66 end | |
67 if clamp_covY, cwr.SigmaY = SigmaY; end | |
68 if clamp_weights, cwr.weightsY = weightsY; end | |
69 return; | |
70 end | |
71 | |
72 | |
73 if create_init_params | |
74 [cwr.muX, cwr.SigmaX] = mixgauss_init(nc, X, cov_typeX); | |
75 [cwr.muY, cwr.SigmaY] = mixgauss_init(nc, Y, cov_typeY); | |
76 cwr.weightsY = zeros(ny, nx, nc); | |
77 cwr.priorC = normalize(ones(nc,1)); | |
78 else | |
79 cwr.muX = muX; cwr.muY = muY; cwr.SigmaX = SigmaX; cwr.SigmaY = SigmaY; | |
80 cwr.weightsY = weightsY; cwr.priorC = priorC; | |
81 end | |
82 | |
83 | |
84 if clamp_covY, cwr.SigmaY = SigmaY; end | |
85 if clamp_covX, cwr.SigmaX = SigmaX; end | |
86 if clamp_weights, cwr.weightsY = weightsY; end | |
87 | |
88 previous_loglik = -inf; | |
89 num_iter = 1; | |
90 converged = 0; | |
91 | |
92 while (num_iter <= max_iter) & ~converged | |
93 | |
94 % E step | |
95 | |
96 [likXandY, likYgivenX, post] = cwr_prob(cwr, X, Y); | |
97 loglik = sum(log(likXandY)); | |
98 % extract expected sufficient statistics | |
99 w = sum(post,2); % post(c,t) | |
100 WYY = zeros(ny, ny, nc); | |
101 WY = zeros(ny, nc); | |
102 WYTY = zeros(nc,1); | |
103 | |
104 WXX = zeros(nx, nx, nc); | |
105 WX = zeros(nx, nc); | |
106 WXTX = zeros(nc, 1); | |
107 WXY = zeros(nx,ny,nc); | |
108 %WYY = repmat(reshape(w, [1 1 nc]), [ny ny 1]) .* repmat(Y*Y', [1 1 nc]); | |
109 for c=1:nc | |
110 weights = repmat(post(c,:), ny, 1); | |
111 WYbig = Y .* weights; | |
112 WYY(:,:,c) = WYbig * Y'; | |
113 WY(:,c) = sum(WYbig, 2); | |
114 WYTY(c) = sum(diag(WYbig' * Y)); | |
115 | |
116 weights = repmat(post(c,:), nx, 1); % weights(nx, nsamples) | |
117 WXbig = X .* weights; | |
118 WXX(:,:,c) = WXbig * X'; | |
119 WX(:,c) = sum(WXbig, 2); | |
120 WXTX(c) = sum(diag(WXbig' * X)); | |
121 WXY(:,:,c) = WXbig * Y'; | |
122 end | |
123 | |
124 % M step | |
125 % Q -> X is called Q->Y in Mstep_clg | |
126 [cwr.muX, cwr.SigmaX] = mixgauss_Mstep(w, WX, WXX, WXTX, ... | |
127 'cov_type', cov_typeX, 'cov_prior', cov_priorX); | |
128 for c=1:nc | |
129 assert(is_psd(cwr.SigmaX(:,:,c))) | |
130 end | |
131 | |
132 if clamp_weights % affects estimate of mu and Sigma | |
133 W = cwr.weightsY; | |
134 else | |
135 W = []; | |
136 end | |
137 [cwr.muY, cwr.SigmaY, cwr.weightsY] = ... | |
138 clg_Mstep(w, WY, WYY, WYTY, WX, WXX, WXY, ... | |
139 'cov_type', cov_typeY, 'clamped_weights', W, ... | |
140 'cov_prior', cov_priorY); | |
141 %'xs', X, 'ys', Y, 'post', post); % debug | |
142 %a = linspace(min(Y(2,:)), max(Y(2,:)), nc+2); | |
143 %cwr.muY(2,:) = a(2:end-1); | |
144 | |
145 cwr.priorC = normalize(w); | |
146 | |
147 for c=1:nc | |
148 assert(is_psd(cwr.SigmaY(:,:,c))) | |
149 end | |
150 | |
151 if clamp_covY, cwr.SigmaY = SigmaY; end | |
152 if clamp_covX, cwr.SigmaX = SigmaX; end | |
153 if clamp_weights, cwr.weightsY = weightsY; end | |
154 | |
155 if verbose, fprintf(1, 'iteration %d, loglik = %f\n', num_iter, loglik); end | |
156 num_iter = num_iter + 1; | |
157 converged = em_converged(loglik, previous_loglik, thresh); | |
158 previous_loglik = loglik; | |
159 | |
160 end | |
161 |