comparison toolboxes/FullBNT-1.0.7/HMM/dhmm_em_online.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function [transmat, obsmat, exp_num_trans, exp_num_emit, gamma, ll] = dhmm_em_online(...
2 prior, transmat, obsmat, exp_num_trans, exp_num_emit, decay, data, ...
3 act, adj_trans, adj_obs, dirichlet, filter_only)
4 % ONLINE_EM Adjust the parameters using a weighted combination of the old and new expected statistics
5 %
6 % [transmat, obsmat, exp_num_trans, exp_num_emit, gamma, ll] = online_em(...
7 % prior, transmat, obsmat, exp_num_trans, exp_num_emit, decay, data, act, ...
8 % adj_trans, adj_obs, dirichlet, filter_only)
9 %
10 % 0 < decay < 1, with smaller values meaning the past is forgotten more quickly.
11 % (We need to decay the old ess, since they were based on out-of-date parameters.)
12 % The other params are as in learn_hmm.
13 % We do a single forwards-backwards pass on the provided data, initializing with the specified prior.
14 % (If filter_only = 1, we only do a forwards pass.)
15
16 if ~exist('act'), act = []; end
17 if ~exist('adj_trans'), adj_trans = 1; end
18 if ~exist('adj_obs'), adj_obs = 1; end
19 if ~exist('dirichlet'), dirichlet = 0; end
20 if ~exist('filter_only'), filter_only = 0; end
21
22 % E step
23 olikseq = multinomial_prob(data, obsmat);
24 if isempty(act)
25 [alpha, beta, gamma, ll, xi] = fwdback(prior, transmat, olikseq, 'fwd_only', filter_only);
26 else
27 [alpha, beta, gamma, ll, xi] = fwdback(prior, transmat, olikseq, 'fwd_only', filter_only, ...
28 'act', act);
29 end
30
31 % Increment ESS
32 [S O] = size(obsmat);
33 if adj_obs
34 exp_num_emit = decay*exp_num_emit + dirichlet*ones(S,O);
35 T = length(data);
36 if T < O
37 for t=1:T
38 o = data(t);
39 exp_num_emit(:,o) = exp_num_emit(:,o) + gamma(:,t);
40 end
41 else
42 for o=1:O
43 ndx = find(data==o);
44 if ~isempty(ndx)
45 exp_num_emit(:,o) = exp_num_emit(:,o) + sum(gamma(:, ndx), 2);
46 end
47 end
48 end
49 end
50
51 if adj_trans & (T > 1)
52 if isempty(act)
53 exp_num_trans = decay*exp_num_trans + sum(xi,3);
54 else
55 % act(2) determines Q(2), xi(:,:,1) holds P(Q(1), Q(2))
56 A = length(transmat);
57 for a=1:A
58 ndx = find(act(2:end)==a);
59 if ~isempty(ndx)
60 exp_num_trans{a} = decay*exp_num_trans{a} + sum(xi(:,:,ndx), 3);
61 end
62 end
63 end
64 end
65
66
67 % M step
68
69 if adj_obs
70 obsmat = mk_stochastic(exp_num_emit);
71 end
72 if adj_trans & (T>1)
73 if isempty(act)
74 transmat = mk_stochastic(exp_num_trans);
75 else
76 for a=1:A
77 transmat{a} = mk_stochastic(exp_num_trans{a});
78 end
79 end
80 end