comparison toolboxes/distance_learning/mlr/regularize/regularizeMKLDOD.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function r = regularizeMKLDOD(W, X, gradient)
2 %
3 % r = regularizeMKLDOD(W, X, gradient)
4 %
5 %
6
7 [d,n,m] = size(X);
8
9 if gradient
10 r = zeros(m,m,d);
11 for i = 1:m
12 r(i,i,:) = diag(X(:,:,i));
13 for j = (i+1):m
14 r(i,j,:) = diag(X(:,:,i)) + diag(X(:,:,j));
15 end
16 end
17 else
18 r = 0;
19 for i = 1:m
20 r = r + squeeze(W(i,i,:))' * diag(X(:,:,i));
21 for j = (i+1):m
22 r = r + squeeze(W(i,j,:))' * (diag(X(:,:,i)) + diag(X(:,:,j)));
23 end
24 end
25 end
26 end