comparison toolboxes/distance_learning/mlr/distance/setDistanceDODMKL.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function D = setDistanceDODMKL(X, W, Ifrom, Ito)
2 %
3 % D = setDistanceDODMKL(X, W, Ifrom, Ito)
4 %
5 % X = d-by-n data matrix
6 % W = m-by-m-by-n PSD matrix
7 % Ifrom = k-by-1 vector of source points
8 % Ito = j-by-1 vector of destination points
9 %
10 % D = n-by-n matrix of squared euclidean distances from Ifrom to Ito
11 % D is sparse, and only the rows corresponding to Ifrom and
12 % columns corresponding to Ito are populated.
13
14 [d,n,m] = size(X);
15 L = W.^0.5;
16
17 D = 0;
18 for i = 1:m
19 for j = i:m
20 Vfrom = bsxfun(@times, squeeze(L(i,j)), X(:,Ifrom,i) + X(:,Ifrom,j));
21
22 if nargin == 4
23 Vto = bsxfun(@times, squeeze(L(i,j)), X(:,Ito,i) + X(:,Ito,j));
24 else
25 Vto = bsxfun(@times, squeeze(L(i,j)), X(:,:,i) + X(:,:,j));
26 Ito = 1:n;
27 end
28
29 if i == j
30 s = 0.5;
31 else
32 s = 1;
33 end
34
35 D = D + s * distToFrom(n, Vto, Vfrom, Ito, Ifrom);
36 end
37 end
38
39 end