Mercurial > hg > camir-aes2014
comparison toolboxes/SVM-light/src/svm_loqo.c @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 /***********************************************************************/ | |
2 /* */ | |
3 /* svm_loqo.c */ | |
4 /* */ | |
5 /* Interface to the PR_LOQO optimization package for SVM. */ | |
6 /* */ | |
7 /* Author: Thorsten Joachims */ | |
8 /* Date: 19.07.99 */ | |
9 /* */ | |
10 /* Copyright (c) 1999 Universitaet Dortmund - All rights reserved */ | |
11 /* */ | |
12 /* This software is available for non-commercial use only. It must */ | |
13 /* not be modified and distributed without prior permission of the */ | |
14 /* author. The author is not responsible for implications from the */ | |
15 /* use of this software. */ | |
16 /* */ | |
17 /***********************************************************************/ | |
18 | |
19 # include <math.h> | |
20 # include "pr_loqo/pr_loqo.h" | |
21 # include "svm_common.h" | |
22 | |
23 /* Common Block Declarations */ | |
24 | |
25 long verbosity; | |
26 | |
27 /* /////////////////////////////////////////////////////////////// */ | |
28 | |
29 # define DEF_PRECISION_LINEAR 1E-8 | |
30 # define DEF_PRECISION_NONLINEAR 1E-14 | |
31 | |
32 double *optimize_qp(); | |
33 double *primal=0,*dual=0; | |
34 double init_margin=0.15; | |
35 long init_iter=500,precision_violations=0; | |
36 double model_b; | |
37 double opt_precision=DEF_PRECISION_LINEAR; | |
38 | |
39 /* /////////////////////////////////////////////////////////////// */ | |
40 | |
41 void *my_malloc(); | |
42 | |
43 double *optimize_qp(qp,epsilon_crit,nx,threshold,learn_parm) | |
44 QP *qp; | |
45 double *epsilon_crit; | |
46 long nx; /* Maximum number of variables in QP */ | |
47 double *threshold; | |
48 LEARN_PARM *learn_parm; | |
49 /* start the optimizer and return the optimal values */ | |
50 { | |
51 register long i,j,result; | |
52 double margin,obj_before,obj_after; | |
53 double sigdig,dist,epsilon_loqo; | |
54 int iter; | |
55 | |
56 if(!primal) { /* allocate memory at first call */ | |
57 primal=(double *)my_malloc(sizeof(double)*nx*3); | |
58 dual=(double *)my_malloc(sizeof(double)*(nx*2+1)); | |
59 } | |
60 | |
61 if(verbosity>=4) { /* really verbose */ | |
62 printf("\n\n"); | |
63 for(i=0;i<qp->opt_n;i++) { | |
64 printf("%f: ",qp->opt_g0[i]); | |
65 for(j=0;j<qp->opt_n;j++) { | |
66 printf("%f ",qp->opt_g[i*qp->opt_n+j]); | |
67 } | |
68 printf(": a%ld=%.10f < %f",i,qp->opt_xinit[i],qp->opt_up[i]); | |
69 printf(": y=%f\n",qp->opt_ce[i]); | |
70 } | |
71 for(j=0;j<qp->opt_m;j++) { | |
72 printf("EQ-%ld: %f*a0",j,qp->opt_ce[j]); | |
73 for(i=1;i<qp->opt_n;i++) { | |
74 printf(" + %f*a%ld",qp->opt_ce[i],i); | |
75 } | |
76 printf(" = %f\n\n",-qp->opt_ce0[0]); | |
77 } | |
78 } | |
79 | |
80 obj_before=0; /* calculate objective before optimization */ | |
81 for(i=0;i<qp->opt_n;i++) { | |
82 obj_before+=(qp->opt_g0[i]*qp->opt_xinit[i]); | |
83 obj_before+=(0.5*qp->opt_xinit[i]*qp->opt_xinit[i]*qp->opt_g[i*qp->opt_n+i]); | |
84 for(j=0;j<i;j++) { | |
85 obj_before+=(qp->opt_xinit[j]*qp->opt_xinit[i]*qp->opt_g[j*qp->opt_n+i]); | |
86 } | |
87 } | |
88 | |
89 result=STILL_RUNNING; | |
90 qp->opt_ce0[0]*=(-1.0); | |
91 /* Run pr_loqo. If a run fails, try again with parameters which lead */ | |
92 /* to a slower, but more robust setting. */ | |
93 for(margin=init_margin,iter=init_iter; | |
94 (margin<=0.9999999) && (result!=OPTIMAL_SOLUTION);) { | |
95 sigdig=-log10(opt_precision); | |
96 | |
97 result=pr_loqo((int)qp->opt_n,(int)qp->opt_m, | |
98 (double *)qp->opt_g0,(double *)qp->opt_g, | |
99 (double *)qp->opt_ce,(double *)qp->opt_ce0, | |
100 (double *)qp->opt_low,(double *)qp->opt_up, | |
101 (double *)primal,(double *)dual, | |
102 (int)(verbosity-2), | |
103 (double)sigdig,(int)iter, | |
104 (double)margin,(double)(qp->opt_up[0])/4.0,(int)0); | |
105 | |
106 if(isnan(dual[0])) { /* check for choldc problem */ | |
107 if(verbosity>=2) { | |
108 printf("NOTICE: Restarting PR_LOQO with more conservative parameters.\n"); | |
109 } | |
110 if(init_margin<0.80) { /* become more conservative in general */ | |
111 init_margin=(4.0*margin+1.0)/5.0; | |
112 } | |
113 margin=(margin+1.0)/2.0; | |
114 (opt_precision)*=10.0; /* reduce precision */ | |
115 if(verbosity>=2) { | |
116 printf("NOTICE: Reducing precision of PR_LOQO.\n"); | |
117 } | |
118 } | |
119 else if(result!=OPTIMAL_SOLUTION) { | |
120 iter+=2000; | |
121 init_iter+=10; | |
122 (opt_precision)*=10.0; /* reduce precision */ | |
123 if(verbosity>=2) { | |
124 printf("NOTICE: Reducing precision of PR_LOQO due to (%ld).\n",result); | |
125 } | |
126 } | |
127 } | |
128 | |
129 if(qp->opt_m) /* Thanks to Alex Smola for this hint */ | |
130 model_b=dual[0]; | |
131 else | |
132 model_b=0; | |
133 | |
134 /* Check the precision of the alphas. If results of current optimization */ | |
135 /* violate KT-Conditions, relax the epsilon on the bounds on alphas. */ | |
136 epsilon_loqo=1E-10; | |
137 for(i=0;i<qp->opt_n;i++) { | |
138 dist=-model_b*qp->opt_ce[i]; | |
139 dist+=(qp->opt_g0[i]+1.0); | |
140 for(j=0;j<i;j++) { | |
141 dist+=(primal[j]*qp->opt_g[j*qp->opt_n+i]); | |
142 } | |
143 for(j=i;j<qp->opt_n;j++) { | |
144 dist+=(primal[j]*qp->opt_g[i*qp->opt_n+j]); | |
145 } | |
146 /* printf("LOQO: a[%d]=%f, dist=%f, b=%f\n",i,primal[i],dist,dual[0]); */ | |
147 if((primal[i]<(qp->opt_up[i]-epsilon_loqo)) && (dist < (1.0-(*epsilon_crit)))) { | |
148 epsilon_loqo=(qp->opt_up[i]-primal[i])*2.0; | |
149 } | |
150 else if((primal[i]>(0+epsilon_loqo)) && (dist > (1.0+(*epsilon_crit)))) { | |
151 epsilon_loqo=primal[i]*2.0; | |
152 } | |
153 } | |
154 | |
155 for(i=0;i<qp->opt_n;i++) { /* clip alphas to bounds */ | |
156 if(primal[i]<=(0+epsilon_loqo)) { | |
157 primal[i]=0; | |
158 } | |
159 else if(primal[i]>=(qp->opt_up[i]-epsilon_loqo)) { | |
160 primal[i]=qp->opt_up[i]; | |
161 } | |
162 } | |
163 | |
164 obj_after=0; /* calculate objective after optimization */ | |
165 for(i=0;i<qp->opt_n;i++) { | |
166 obj_after+=(qp->opt_g0[i]*primal[i]); | |
167 obj_after+=(0.5*primal[i]*primal[i]*qp->opt_g[i*qp->opt_n+i]); | |
168 for(j=0;j<i;j++) { | |
169 obj_after+=(primal[j]*primal[i]*qp->opt_g[j*qp->opt_n+i]); | |
170 } | |
171 } | |
172 | |
173 /* if optimizer returned NAN values, reset and retry with smaller */ | |
174 /* working set. */ | |
175 if(isnan(obj_after) || isnan(model_b)) { | |
176 for(i=0;i<qp->opt_n;i++) { | |
177 primal[i]=qp->opt_xinit[i]; | |
178 } | |
179 model_b=0; | |
180 if(learn_parm->svm_maxqpsize>2) { | |
181 learn_parm->svm_maxqpsize--; /* decrease size of qp-subproblems */ | |
182 } | |
183 } | |
184 | |
185 if(obj_after >= obj_before) { /* check whether there was progress */ | |
186 (opt_precision)/=100.0; | |
187 precision_violations++; | |
188 if(verbosity>=2) { | |
189 printf("NOTICE: Increasing Precision of PR_LOQO.\n"); | |
190 } | |
191 } | |
192 | |
193 if(precision_violations > 500) { | |
194 (*epsilon_crit)*=10.0; | |
195 precision_violations=0; | |
196 if(verbosity>=1) { | |
197 printf("\nWARNING: Relaxing epsilon on KT-Conditions.\n"); | |
198 } | |
199 } | |
200 | |
201 (*threshold)=model_b; | |
202 | |
203 if(result!=OPTIMAL_SOLUTION) { | |
204 printf("\nERROR: PR_LOQO did not converge. \n"); | |
205 return(qp->opt_xinit); | |
206 } | |
207 else { | |
208 return(primal); | |
209 } | |
210 } | |
211 |