Mercurial > hg > camir-aes2014
comparison toolboxes/RBM/gen_training_rbm.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function [W visB hidB] = gen_training_krbm(conf,W,mW,train_file,train_label) | |
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
3 % Training Knowledge Based RBM for generative classification % | |
4 % conf: training setting % | |
5 % W: weights of connections % | |
6 % mW: mask of connections % | |
7 % -*-sontran2012-*- % | |
8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
9 %% load data | |
10 vars = whos('-file', train_file); | |
11 A = load(train_file,vars(1).name); | |
12 data = A.(vars(1).name); | |
13 vars = whos('-file', train_label); | |
14 A = load(train_label,vars(1).name); | |
15 label = A.(vars(1).name); | |
16 assert(~isempty(data),'[KRBM-GEN] Data is empty'); | |
17 assert(size(data,1) == size(label,1),'[KRBM-GEN] Number of data and label mismatch'); | |
18 Classes = unique(label)'; | |
19 lNum = size(Classes,2); | |
20 data = [data discrete2softmax(label,Classes)] | |
21 %% initialization | |
22 visNum = size(data,2); | |
23 hidNum = conf.hidNum; | |
24 sNum = conf.sNum; | |
25 lr = conf.params(1); | |
26 N = 10; % Number of epoch training with lr_1 | |
27 W = [W;0.1*randn(visNum - size(W,1),size(W,2))]; | |
28 W = [W 0.1*randn(size(W,1),hidNum-size(W,2))]; | |
29 | |
30 DW = zeros(size(W)); | |
31 visB = zeros(1,visNum); | |
32 DVB = zeros(1,visNum); | |
33 hidB = zeros(1,hidNum); | |
34 DHB = zeros(1,hidNum); | |
35 visP = zeros(sNum,visNum); | |
36 visN = zeros(sNum,visNum); | |
37 visNs = zeros(sNum,visNum); | |
38 hidP = zeros(sNum,hidNum); | |
39 hidPs = zeros(sNum,hidNum); | |
40 hidN = zeros(sNum,hidNum); | |
41 hidNs = zeros(sNum,hidNum); | |
42 %% Reconstruction error & evaluation error & early stopping | |
43 mse = 0; | |
44 omse = 0; | |
45 inc_count = 0; | |
46 MAX_INC = 3; % If the error increase MAX_INC times continuously, then stop training | |
47 %% Average best settings | |
48 n_best = 1; | |
49 aW = size(W); | |
50 aVB = size(visB); | |
51 aHB = size(hidB); | |
52 %% ==================== Start training =========================== %% | |
53 for i=1:conf.eNum | |
54 if i== N+1 | |
55 lr = conf.params(2); | |
56 end | |
57 omse = mse; | |
58 mse = 0; | |
59 for j=1:conf.bNum | |
60 visP = data((j-1)*conf.sNum+1:j*conf.sNum,:); | |
61 %up | |
62 hidP = logistic(visP*W + repmat(hidB,sNum,1)); | |
63 hidPs = 1*(hidP >rand(sNum,hidNum)); | |
64 hidNs = hidPs; | |
65 for k=1:conf.gNum | |
66 % down | |
67 visN = hidNs*W' + repmat(visB,sNum,1); | |
68 visN(:,1:visNum-lNum) = logistic(visN(:,1:visNum-lNum)); | |
69 visN(:,visNum-lNum+1:visNum) = softmax_activation(visN(:,visNum-lNum+1:visNum)); | |
70 visNs = [1*(visN(:,1:visNum-lNum)>rand(sNum,visNum-lNum)) visN(:,visNum-lNum+1:visNum)]; | |
71 if j==5 && k==1, observe_reconstruction(visN(:,1:visNum-lNum),sNum,i,28,28); end | |
72 % up | |
73 hidN = logistic(visNs*W + repmat(hidB,sNum,1)); | |
74 hidNs = 1*(hidN>rand(sNum,hidNum)); | |
75 end | |
76 % Compute MSE for reconstruction | |
77 rdiff = (visP - visN); | |
78 mse = mse + sum(sum(rdiff.*rdiff))/(sNum*visNum); | |
79 % Update W,visB,hidB | |
80 diff = (visP'*hidP - visNs'*hidN)/sNum; | |
81 DW = lr*(diff - conf.params(4)*W) + conf.params(3)*DW; | |
82 W = W + DW; | |
83 % W = W.*mW; | |
84 DVB = lr*sum(visP - visN,1)/sNum + conf.params(3)*DVB; | |
85 visB = visB + DVB; | |
86 DHB = lr*sum(hidP - hidN,1)/sNum + conf.params(3)*DHB; | |
87 hidB = hidB + DHB; | |
88 end | |
89 if mse > omse | |
90 inc_count = inc_count + 1 | |
91 else | |
92 inc_count = 0; | |
93 end | |
94 if inc_count> MAX_INC, break; end; | |
95 fprintf('Epoch %d : MSE = %f\n',i,mse); | |
96 end | |
97 end |