Mercurial > hg > camir-aes2014
comparison toolboxes/MIRtoolbox1.3.2/somtoolbox/som_vs2to1.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function sS = som_vs2to1(sS) | |
2 | |
3 %SOM_VS2TO1 Convert version 2 struct to version 1. | |
4 % | |
5 % sSold = som_vs2to1(sSnew) | |
6 % | |
7 % sMold = som_vs2to1(sMnew); | |
8 % sDold = som_vs2to1(sDnew); | |
9 % | |
10 % Input and output arguments: | |
11 % sSnew (struct) a SOM Toolbox version 2 struct | |
12 % sSold (struct) a SOM Toolbox version 1 struct | |
13 % | |
14 % For more help, try 'type som_vs2to1' or check out online documentation. | |
15 % See also SOM_SET, SOM_VS1TO2. | |
16 | |
17 %%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
18 % | |
19 % som_vs2to1 | |
20 % | |
21 % PURPOSE | |
22 % | |
23 % Converts SOM Toolbox version 2 structs to version 1 structs. | |
24 % | |
25 % SYNTAX | |
26 % | |
27 % sS1 = som_vs2to1(sS2) | |
28 % | |
29 % DESCRIPTION | |
30 % | |
31 % This function is offered to allow the change of new map and data structs | |
32 % to old ones. There are quite a lot of changes between the versions, | |
33 % especially in the map struct, and this function makes it possible to | |
34 % use the old functions with new structs. | |
35 % | |
36 % Note that part of the information is lost in the conversion. Especially, | |
37 % training history is lost, and the normalization is, except in the simplest | |
38 % cases (like all have 'range' or 'var' normalization) screwed up. | |
39 % | |
40 % REQUIRED INPUT ARGUMENTS | |
41 % | |
42 % sS2 (struct) som SOM Toolbox version 2.0 struct (map, data, | |
43 % training or normalization struct) | |
44 % | |
45 % OUTPUT ARGUMENTS | |
46 % | |
47 % sS1 (struct) the corresponding SOM Toolbox version 2.0 struct | |
48 % | |
49 % EXAMPLES | |
50 % | |
51 % sM = som_vs2to1(sMnew); | |
52 % sD = som_vs2to1(sDnew); | |
53 % sT = som_vs2to1(sMnew.trainhist(1)); | |
54 % | |
55 % SEE ALSO | |
56 % | |
57 % som_set Set values and create SOM Toolbox structs. | |
58 % som_vs1to2 Transform structs from 1.0 version to 2.0. | |
59 | |
60 % Copyright (c) 1999-2000 by the SOM toolbox programming team. | |
61 % http://www.cis.hut.fi/projects/somtoolbox/ | |
62 | |
63 % Version 2.0beta juuso 101199 | |
64 | |
65 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
66 %% check arguments | |
67 | |
68 error(nargchk(1, 1, nargin)); % check no. of input arguments is correct | |
69 | |
70 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
71 %% set field values | |
72 | |
73 switch sS.type, | |
74 case 'som_map', | |
75 msize = sS.topol.msize; | |
76 [munits dim] = size(sS.codebook); | |
77 | |
78 % topology | |
79 if strcmp(sS.topol.shape,'sheet'), shape = 'rect'; | |
80 else shape = sS.shape; | |
81 end | |
82 | |
83 % labels | |
84 labels = cell(munits,1); | |
85 nl = size(sS.labels,2); | |
86 for i=1:munits, | |
87 labels{i} = cell(nl,1); | |
88 for j=1:nl, labels{i}{j} = sS.labels{i,j}; end | |
89 end | |
90 | |
91 % trainhist | |
92 tl = length(sS.trainhist); | |
93 if tl==0 | strcmp(sS.trainhist(1).algorithm,'lininit'), | |
94 init_type = 'linear'; | |
95 else | |
96 init_type = 'random'; | |
97 end | |
98 if tl>1, | |
99 for i=2:tl, | |
100 train_seq{i-1} = som_vs2to1(sS.trainhist(i)); | |
101 end | |
102 train_type = sS.trainhist(tl).algorithm; | |
103 else | |
104 train_seq = []; | |
105 train_type = 'batch'; | |
106 end | |
107 if tl>0, data_name = sS.trainhist(tl).data_name; else data_name = ''; end | |
108 | |
109 % component normalizations | |
110 sN = convert_normalizations(sS.comp_norm); | |
111 if strcmp(sN.name,'som_hist_norm'), | |
112 sS.codebook = redo_hist_norm(sS.codebook,sS.comp_norm,sN); | |
113 end | |
114 | |
115 % map | |
116 sSnew = struct('init_type', 'linear', 'train_type', 'batch', 'lattice' ,... | |
117 'hexa', 'shape', 'rect', 'neigh', 'gaussian', 'msize', msize, ... | |
118 'train_sequence', [], 'codebook', [], 'labels', [], ... | |
119 'mask', [], 'data_name', 'unnamed', 'normalization', [], ... | |
120 'comp_names', [], 'name', 'unnamed'); | |
121 sSnew.init_type = init_type; | |
122 sSnew.train_type = train_type; | |
123 sSnew.lattice = sS.topol.lattice; | |
124 sSnew.shape = shape; | |
125 sSnew.neigh = sS.neigh; | |
126 sSnew.msize = sS.topol.msize; | |
127 sSnew.train_sequence = train_seq; | |
128 sSnew.codebook = reshape(sS.codebook,[sS.topol.msize dim]); | |
129 sSnew.labels = labels; | |
130 sSnew.mask = sS.mask; | |
131 sSnew.data_name = data_name; | |
132 sSnew.normalization = sN; | |
133 sSnew.comp_names = sS.comp_names; | |
134 sSnew.name = sS.name; | |
135 | |
136 case 'som_data', | |
137 [dlen dim] = size(sS.data); | |
138 | |
139 % component normalizations | |
140 sN = convert_normalizations(sS.comp_norm); | |
141 if strcmp(sN.name,'som_hist_norm'), | |
142 sS.codebook = redo_hist_norm(sS.codebook,sS.comp_norm,sN); | |
143 end | |
144 | |
145 % data | |
146 sSnew = struct('data', [], 'name', '', 'labels' , [], 'comp_names', ... | |
147 [], 'normalization', []); | |
148 sSnew.data = sS.data; | |
149 sSnew.name = sS.name; | |
150 sSnew.labels = sS.labels; | |
151 sSnew.comp_names = sS.comp_names; | |
152 sSnew.normalization = sN; | |
153 | |
154 case 'som_norm', | |
155 sSnew = struct('name','som_var_norm','inv_params',[]); | |
156 | |
157 switch sS.method, | |
158 case 'var', sSnew.name = 'som_var_norm'; | |
159 case 'range', sSnew.name = 'som_lin_norm'; | |
160 case 'histD', sSnew.name = 'som_hist_norm'; | |
161 otherwise, | |
162 warning(['Method ' method ' does not exist in version 1.']) | |
163 end | |
164 | |
165 if strcmp(sS.status,'done'), | |
166 switch sS.method, | |
167 case 'var', | |
168 sSnew.inv_params = zeros(2,1); | |
169 sSnew.inv_params(1) = sS.params(1); | |
170 sSnew.inv_params(2) = sS.params(2); | |
171 case 'range', | |
172 sSnew.inv_params = zeros(2,1); | |
173 sSnew.inv_params(1) = sS.params(1); | |
174 sSnew.inv_params(2) = sS.params(2) + sS.params(1);; | |
175 case 'histD', | |
176 bins = length(sS.params); | |
177 sSnew.inv_params = zeros(bins+1,1) + Inf; | |
178 sSnew.inv_params(1:bins,i) = sS.params; | |
179 sSnew.inv_params(end,i) = bins; | |
180 end | |
181 end | |
182 | |
183 case 'som_train', | |
184 sSnew = struct('algorithm', sS.algorithm, 'radius_ini', ... | |
185 sS.radius_ini, 'radius_fin', sS.radius_fin, 'alpha_ini', ... | |
186 sS.alpha_ini, 'alpha_type', sS.alpha_type, 'trainlen', sS.trainlen, ... | |
187 'qerror', NaN, 'time', sS.time); | |
188 | |
189 case 'som_topol', | |
190 disp('Version 1 of SOM Toolbox did not have topology structure.\n'); | |
191 | |
192 otherwise, | |
193 | |
194 error('Unrecognized struct.'); | |
195 end | |
196 | |
197 sS = sSnew; | |
198 | |
199 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
200 %% subfunctions | |
201 | |
202 function sN = convert_normalizations(cnorm) | |
203 | |
204 dim = length(cnorm); | |
205 sN = struct('name','som_var_norm','inv_params',[]); | |
206 | |
207 % check that there is exactly one normalization per component | |
208 % and that their status and method is the same | |
209 ok = 1; | |
210 nof = zeros(dim,1); | |
211 for i=1:dim, nof(i) = length(cnorm{i}); end | |
212 if any(nof>1), ok=0; | |
213 elseif any(nof==1) & any(nof==0), ok=0; | |
214 elseif any(nof>0), | |
215 status = cnorm{1}.status; | |
216 method = cnorm{1}.method; | |
217 for i=2:dim, | |
218 if ~strcmp(cnorm{i}.status,status) | ~strcmp(cnorm{i}.method,method), | |
219 ok = 0; | |
220 end | |
221 end | |
222 elseif all(nof==0), | |
223 return; | |
224 end | |
225 if ~ok, | |
226 warning(['Normalization could not be converted. All variables can' ... | |
227 ' only be normalized with a single, and same, method.']); | |
228 return; | |
229 end | |
230 | |
231 % method name | |
232 switch method, | |
233 case 'var', sN.name = 'som_var_norm'; | |
234 case 'range', sN.name = 'som_lin_norm'; | |
235 case 'histD', sN.name = 'som_hist_norm'; | |
236 otherwise, | |
237 warning(['Normalization could not be converted. Method ' method ... | |
238 'does not exist in version 1.']); | |
239 return; | |
240 end | |
241 | |
242 % if not done, inv_params is empty | |
243 if ~strcmp(status,'done'), return; end | |
244 | |
245 % ok, make the conversion | |
246 switch method, | |
247 case 'var', | |
248 sN.inv_params = zeros(2,dim); | |
249 for i=1:dim, | |
250 sN.inv_params(1,i) = cnorm{i}.params(1); | |
251 sN.inv_params(2,i) = cnorm{i}.params(2); | |
252 end | |
253 case 'range', | |
254 sN.inv_params = zeros(2,dim); | |
255 for i=1:dim, | |
256 sN.inv_params(1,i) = cnorm{i}.params(1); | |
257 sN.inv_params(2,i) = cnorm{i}.params(2) + cnorm{i}.params(1); | |
258 end | |
259 case 'histD', | |
260 bins = zeros(dim,1); | |
261 for i=1:dim, bins(i) = length(cnorm{i}.params); end | |
262 m = max(bins); | |
263 sN.inv_params = zeros(m+1,dim) + Inf; | |
264 for i=1:dim, | |
265 sN.inv_params(1:bins(i),i) = cnorm{i}.params; | |
266 if bins(i)<m, sN.inv_params(bins(i)+1,i) = NaN; end | |
267 sN.inv_params(end,i) = bins(i); | |
268 end | |
269 end | |
270 | |
271 function D = redo_hist_norm(D,cnorm,sN) | |
272 | |
273 dim = size(D,2); | |
274 | |
275 % first - undo the new way | |
276 for i=1:dim, | |
277 bins = length(cnorm{i}.params); | |
278 D(:,i) = round(D(:,i)*(bins-1)+1); | |
279 inds = find(~isnan(D(:,i)) & ~isinf(D(:,i))); | |
280 D(inds,i) = cnorm{i}.params(D(inds,i)); | |
281 end | |
282 % then - redo the old way | |
283 n_bins = sN.inv_params(size(sN.inv_params,1),:); | |
284 for j = 1:dim, | |
285 for i = 1:size(D, 1) | |
286 if ~isnan(D(i, j)), | |
287 [d ind] = min(abs(D(i, j) - sN.inv_params(1:n_bins(j), j))); | |
288 if (D(i, j) - sN.inv_params(ind, j)) > 0 & ind < n_bins(j), | |
289 D(i, j) = ind + 1; | |
290 else | |
291 D(i, j) = ind; | |
292 end | |
293 end | |
294 end | |
295 end | |
296 D = D * sparse(diag(1 ./ n_bins)); | |
297 | |
298 |