comparison toolboxes/MIRtoolbox1.3.2/somtoolbox/som_vs2to1.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function sS = som_vs2to1(sS)
2
3 %SOM_VS2TO1 Convert version 2 struct to version 1.
4 %
5 % sSold = som_vs2to1(sSnew)
6 %
7 % sMold = som_vs2to1(sMnew);
8 % sDold = som_vs2to1(sDnew);
9 %
10 % Input and output arguments:
11 % sSnew (struct) a SOM Toolbox version 2 struct
12 % sSold (struct) a SOM Toolbox version 1 struct
13 %
14 % For more help, try 'type som_vs2to1' or check out online documentation.
15 % See also SOM_SET, SOM_VS1TO2.
16
17 %%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18 %
19 % som_vs2to1
20 %
21 % PURPOSE
22 %
23 % Converts SOM Toolbox version 2 structs to version 1 structs.
24 %
25 % SYNTAX
26 %
27 % sS1 = som_vs2to1(sS2)
28 %
29 % DESCRIPTION
30 %
31 % This function is offered to allow the change of new map and data structs
32 % to old ones. There are quite a lot of changes between the versions,
33 % especially in the map struct, and this function makes it possible to
34 % use the old functions with new structs.
35 %
36 % Note that part of the information is lost in the conversion. Especially,
37 % training history is lost, and the normalization is, except in the simplest
38 % cases (like all have 'range' or 'var' normalization) screwed up.
39 %
40 % REQUIRED INPUT ARGUMENTS
41 %
42 % sS2 (struct) som SOM Toolbox version 2.0 struct (map, data,
43 % training or normalization struct)
44 %
45 % OUTPUT ARGUMENTS
46 %
47 % sS1 (struct) the corresponding SOM Toolbox version 2.0 struct
48 %
49 % EXAMPLES
50 %
51 % sM = som_vs2to1(sMnew);
52 % sD = som_vs2to1(sDnew);
53 % sT = som_vs2to1(sMnew.trainhist(1));
54 %
55 % SEE ALSO
56 %
57 % som_set Set values and create SOM Toolbox structs.
58 % som_vs1to2 Transform structs from 1.0 version to 2.0.
59
60 % Copyright (c) 1999-2000 by the SOM toolbox programming team.
61 % http://www.cis.hut.fi/projects/somtoolbox/
62
63 % Version 2.0beta juuso 101199
64
65 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
66 %% check arguments
67
68 error(nargchk(1, 1, nargin)); % check no. of input arguments is correct
69
70 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
71 %% set field values
72
73 switch sS.type,
74 case 'som_map',
75 msize = sS.topol.msize;
76 [munits dim] = size(sS.codebook);
77
78 % topology
79 if strcmp(sS.topol.shape,'sheet'), shape = 'rect';
80 else shape = sS.shape;
81 end
82
83 % labels
84 labels = cell(munits,1);
85 nl = size(sS.labels,2);
86 for i=1:munits,
87 labels{i} = cell(nl,1);
88 for j=1:nl, labels{i}{j} = sS.labels{i,j}; end
89 end
90
91 % trainhist
92 tl = length(sS.trainhist);
93 if tl==0 | strcmp(sS.trainhist(1).algorithm,'lininit'),
94 init_type = 'linear';
95 else
96 init_type = 'random';
97 end
98 if tl>1,
99 for i=2:tl,
100 train_seq{i-1} = som_vs2to1(sS.trainhist(i));
101 end
102 train_type = sS.trainhist(tl).algorithm;
103 else
104 train_seq = [];
105 train_type = 'batch';
106 end
107 if tl>0, data_name = sS.trainhist(tl).data_name; else data_name = ''; end
108
109 % component normalizations
110 sN = convert_normalizations(sS.comp_norm);
111 if strcmp(sN.name,'som_hist_norm'),
112 sS.codebook = redo_hist_norm(sS.codebook,sS.comp_norm,sN);
113 end
114
115 % map
116 sSnew = struct('init_type', 'linear', 'train_type', 'batch', 'lattice' ,...
117 'hexa', 'shape', 'rect', 'neigh', 'gaussian', 'msize', msize, ...
118 'train_sequence', [], 'codebook', [], 'labels', [], ...
119 'mask', [], 'data_name', 'unnamed', 'normalization', [], ...
120 'comp_names', [], 'name', 'unnamed');
121 sSnew.init_type = init_type;
122 sSnew.train_type = train_type;
123 sSnew.lattice = sS.topol.lattice;
124 sSnew.shape = shape;
125 sSnew.neigh = sS.neigh;
126 sSnew.msize = sS.topol.msize;
127 sSnew.train_sequence = train_seq;
128 sSnew.codebook = reshape(sS.codebook,[sS.topol.msize dim]);
129 sSnew.labels = labels;
130 sSnew.mask = sS.mask;
131 sSnew.data_name = data_name;
132 sSnew.normalization = sN;
133 sSnew.comp_names = sS.comp_names;
134 sSnew.name = sS.name;
135
136 case 'som_data',
137 [dlen dim] = size(sS.data);
138
139 % component normalizations
140 sN = convert_normalizations(sS.comp_norm);
141 if strcmp(sN.name,'som_hist_norm'),
142 sS.codebook = redo_hist_norm(sS.codebook,sS.comp_norm,sN);
143 end
144
145 % data
146 sSnew = struct('data', [], 'name', '', 'labels' , [], 'comp_names', ...
147 [], 'normalization', []);
148 sSnew.data = sS.data;
149 sSnew.name = sS.name;
150 sSnew.labels = sS.labels;
151 sSnew.comp_names = sS.comp_names;
152 sSnew.normalization = sN;
153
154 case 'som_norm',
155 sSnew = struct('name','som_var_norm','inv_params',[]);
156
157 switch sS.method,
158 case 'var', sSnew.name = 'som_var_norm';
159 case 'range', sSnew.name = 'som_lin_norm';
160 case 'histD', sSnew.name = 'som_hist_norm';
161 otherwise,
162 warning(['Method ' method ' does not exist in version 1.'])
163 end
164
165 if strcmp(sS.status,'done'),
166 switch sS.method,
167 case 'var',
168 sSnew.inv_params = zeros(2,1);
169 sSnew.inv_params(1) = sS.params(1);
170 sSnew.inv_params(2) = sS.params(2);
171 case 'range',
172 sSnew.inv_params = zeros(2,1);
173 sSnew.inv_params(1) = sS.params(1);
174 sSnew.inv_params(2) = sS.params(2) + sS.params(1);;
175 case 'histD',
176 bins = length(sS.params);
177 sSnew.inv_params = zeros(bins+1,1) + Inf;
178 sSnew.inv_params(1:bins,i) = sS.params;
179 sSnew.inv_params(end,i) = bins;
180 end
181 end
182
183 case 'som_train',
184 sSnew = struct('algorithm', sS.algorithm, 'radius_ini', ...
185 sS.radius_ini, 'radius_fin', sS.radius_fin, 'alpha_ini', ...
186 sS.alpha_ini, 'alpha_type', sS.alpha_type, 'trainlen', sS.trainlen, ...
187 'qerror', NaN, 'time', sS.time);
188
189 case 'som_topol',
190 disp('Version 1 of SOM Toolbox did not have topology structure.\n');
191
192 otherwise,
193
194 error('Unrecognized struct.');
195 end
196
197 sS = sSnew;
198
199 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
200 %% subfunctions
201
202 function sN = convert_normalizations(cnorm)
203
204 dim = length(cnorm);
205 sN = struct('name','som_var_norm','inv_params',[]);
206
207 % check that there is exactly one normalization per component
208 % and that their status and method is the same
209 ok = 1;
210 nof = zeros(dim,1);
211 for i=1:dim, nof(i) = length(cnorm{i}); end
212 if any(nof>1), ok=0;
213 elseif any(nof==1) & any(nof==0), ok=0;
214 elseif any(nof>0),
215 status = cnorm{1}.status;
216 method = cnorm{1}.method;
217 for i=2:dim,
218 if ~strcmp(cnorm{i}.status,status) | ~strcmp(cnorm{i}.method,method),
219 ok = 0;
220 end
221 end
222 elseif all(nof==0),
223 return;
224 end
225 if ~ok,
226 warning(['Normalization could not be converted. All variables can' ...
227 ' only be normalized with a single, and same, method.']);
228 return;
229 end
230
231 % method name
232 switch method,
233 case 'var', sN.name = 'som_var_norm';
234 case 'range', sN.name = 'som_lin_norm';
235 case 'histD', sN.name = 'som_hist_norm';
236 otherwise,
237 warning(['Normalization could not be converted. Method ' method ...
238 'does not exist in version 1.']);
239 return;
240 end
241
242 % if not done, inv_params is empty
243 if ~strcmp(status,'done'), return; end
244
245 % ok, make the conversion
246 switch method,
247 case 'var',
248 sN.inv_params = zeros(2,dim);
249 for i=1:dim,
250 sN.inv_params(1,i) = cnorm{i}.params(1);
251 sN.inv_params(2,i) = cnorm{i}.params(2);
252 end
253 case 'range',
254 sN.inv_params = zeros(2,dim);
255 for i=1:dim,
256 sN.inv_params(1,i) = cnorm{i}.params(1);
257 sN.inv_params(2,i) = cnorm{i}.params(2) + cnorm{i}.params(1);
258 end
259 case 'histD',
260 bins = zeros(dim,1);
261 for i=1:dim, bins(i) = length(cnorm{i}.params); end
262 m = max(bins);
263 sN.inv_params = zeros(m+1,dim) + Inf;
264 for i=1:dim,
265 sN.inv_params(1:bins(i),i) = cnorm{i}.params;
266 if bins(i)<m, sN.inv_params(bins(i)+1,i) = NaN; end
267 sN.inv_params(end,i) = bins(i);
268 end
269 end
270
271 function D = redo_hist_norm(D,cnorm,sN)
272
273 dim = size(D,2);
274
275 % first - undo the new way
276 for i=1:dim,
277 bins = length(cnorm{i}.params);
278 D(:,i) = round(D(:,i)*(bins-1)+1);
279 inds = find(~isnan(D(:,i)) & ~isinf(D(:,i)));
280 D(inds,i) = cnorm{i}.params(D(inds,i));
281 end
282 % then - redo the old way
283 n_bins = sN.inv_params(size(sN.inv_params,1),:);
284 for j = 1:dim,
285 for i = 1:size(D, 1)
286 if ~isnan(D(i, j)),
287 [d ind] = min(abs(D(i, j) - sN.inv_params(1:n_bins(j), j)));
288 if (D(i, j) - sN.inv_params(ind, j)) > 0 & ind < n_bins(j),
289 D(i, j) = ind + 1;
290 else
291 D(i, j) = ind;
292 end
293 end
294 end
295 end
296 D = D * sparse(diag(1 ./ n_bins));
297
298