comparison toolboxes/MIRtoolbox1.3.2/somtoolbox/som_pieplane.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function h=som_pieplane(varargin)
2
3 %SOM_PIEPLANE Visualize the map prototype vectors as pie charts
4 %
5 % h=som_pieplane(lattice, msize, data, [color], [s], [pos])
6 % h=som_pieplane(topol, data, [color], [s], [pos])
7 %
8 % som_pieplane('hexa',[5 5], rand(25,4), jet(4), rand(25,1))
9 % som_pieplane(sM, sM.codebook);
10 %
11 % Input and output arguments ([]'s are optional):
12 % lattice (string) grid 'hexa' or 'rect'
13 % msize (vector) size 1x2, defines the grid, M=msize(1)*msize(2)
14 % (matrix) size Mx2, gives explicit coordinates for each node: in
15 % this case the lattice does not matter.
16 % topol (struct) map or topology struct
17 % data (matrix) size Mxd, Mth row is the data for Mth pie. The
18 % values will be normalized to have unit sum in each row.
19 % [color] (matrix) size dx3, RGB triples. The first row is the
20 % color of the first slice in each pie etc. Default is hsv(d).
21 % (string) ColorSpec or 'none' gives the same color for each slice.
22 % [s] (matrix) size Mx1, gives an individual size scaling for each node.
23 % (scalar) gives the same size for each node. Default is 0.8.
24 % [pos] (vectors) a 1x2 vector that determines position for the
25 % origin, i.e. upper left corner. Default is no translation.
26 %
27 % h (scalar) the object handle to the PATCH object
28 %
29 % The data will be linearly scaled so that its sum is 1 in each unit.
30 % Negative values are invalid. Axis are set as in som_cplane.
31 %
32 % For more help, try 'type som_pieplane' or check out online documentation.
33 % See also SOM_CPLANE, SOM_PLOTPLANE, SOM_BARPLANE
34
35 %%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
36 %
37 % som_pieplane
38 %
39 % PURPOSE
40 %
41 % Visualizes the map prototype vectors as pie charts.
42 %
43 % SYNTAX
44 %
45 % h = som_pieplane(topol, data)
46 % h = som_pieplane(lattice, msize, data)
47 % h = som_pieplane(..., color)
48 % h = som_pieplane(..., color, s)
49 % h = som_pieplane(..., color, s, pos)
50 %
51 % DESCRIPTION
52 %
53 % Visualizes the map prototype vectors as pie charts.
54 %
55 % KNOWN BUGS
56 %
57 % It is not possible to specify explicit coordinates for map
58 % consisting of just one unit as then the msize is interpreted as
59 % map size.
60 %
61 % FEATURES
62 %
63 % - negative values in data cause an error
64 %
65 % - the colors are fixed: changing colormap in the figure (see help
66 % colormap) will not affect the coloring of the slices.
67 %
68 % - if input variable s has size Nxd it gives each slice an individual
69 % scaling factor. This may be used to create a glyph where
70 % the radius of the slice, not the angle, shows the variable
71 % try, e.g., som_pieplane('rect',[5 4],ones(20,4),'w',rand(20,4));
72 %
73 % REQUIRED INPUT ARGUMENTS
74 %
75 % lattice The basic shape of the map units
76 %
77 % (string) 'hexa' or 'rect' positions the pies according to hexagonal or
78 % rectangular map lattice.
79 %
80 % msize The size of the map grid
81 %
82 % (vector) [n1 n2] vector defines the map size (height n1 units,
83 % width n2 units, total M=n1xn2 units). The units will
84 % be placed to their topological locations to form a
85 % uniform hexagonal or rectangular grid.
86 % (matrix) Mx2 matrix defines arbitary coordinates for the M units. In
87 % this case the argument 'lattice' has no effect.
88 %
89 % topol Topology of the map grid
90 %
91 % (struct) map or topology struct from which the topology is taken
92 %
93 % data The data to be visualized
94 %
95 % (matrix) Mxd matrix of data vectors. Negative values are invalid.
96 %
97 % OPTIONAL INPUT ARGUMENTS
98 %
99 % If value is unspecified or empty ([] or ''), the default values
100 % are used for optional input arguments.
101 %
102 % s The size scaling factors for the units
103 %
104 % (scalar) gives each unit the same size scaling:
105 % 0 unit disappears (edges can be seen as a dot)
106 % ... default size is 0.8
107 % >1 unit overlaps others
108 % (matrix) Mx1 double: each unit gets individual size scaling
109 %
110 % color The color of the slices in each pie
111 %
112 % (string) ColorSpec or 'none' gives the same color for each slice
113 % (matrix) dx3 matrix assigns an RGB color determined by the dth row of
114 % the matrix to the dth slice (variable) in each pie plot
115 %
116 % pos Position of origin
117 %
118 % (vector) size 1x2: this is meant for drawing the plane in arbitary
119 % location in a figure. Note the operation: if this argument is
120 % given, the axis limits setting part in the routine is skipped and
121 % the limits setting will be left to be done by
122 % MATLAB's defaults. Default is no translation.
123 %
124 % OUTPUT ARGUMENTS
125 %
126 % h (scalar) Handle to the created patch object.
127 %
128 % OBJECT TAGS
129 %
130 % One object handle is returned: field Tag is set to 'planePie'
131 %
132 % EXAMPLES
133 %
134 % %%% Create the data and make a map
135 %
136 % data=rand(100,5); map=som_make(data);
137 %
138 % %%% Create a 'jet' colormap that has as many rows as the data has variables
139 %
140 % colors=jet(5);
141 %
142 % %%% Draw pies
143 %
144 % som_pieplane(map, map.codebook, colors);
145 %
146 % %%% Calculate the hits of data on the map and normalize them between [0,1]
147 %
148 % hit=som_hits(map,data); hit=hit./max(max(hit));
149 %
150 % %%% Draw the pies so that their size tells the hit count
151 %
152 % som_pieplane(map, map.codebook, colors, hit);
153 %
154 % %%% Try this! (see section FEATURES)
155 %
156 % som_pieplane('rect',[5 4],ones(20,4),'w',rand(20,4));
157 %
158 % SEE ALSO
159 %
160 % som_cplane Visualize a 2D component plane, u-matrix or color plane
161 % som_barplane Visualize the map prototype vectors as bar diagrams
162 % som_plotplane Visualize the map prototype vectors as line graphs
163
164 % Copyright (c) 1999-2000 by the SOM toolbox programming team.
165 % http://www.cis.hut.fi/projects/somtoolbox/
166
167 % Version 2.0beta Johan 140799 juuso 310300 070600
168
169 %%% Check & Init arguments %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
170
171 [nargin, lattice, msize, data, color, s, pos] = vis_planeGetArgs(varargin{:});
172 error(nargchk(3, 6, nargin)); % check no. of input args is correct
173
174 % check pos
175
176 if nargin < 6 | isempty(pos)
177 pos=NaN; % default value for pos (no translation)
178 elseif ~vis_valuetype(pos,{'1x2'})
179 error('Position of origin has to be given as an 1x2 vector');
180 end
181
182 % check msize
183
184 if ~vis_valuetype(msize,{'1x2','nx2'}),
185 error('msize has to be 1x2 grid size vector or a Nx2 coordinate matrix.');
186 end
187
188 % check data
189
190 if ~isnumeric(data),
191 error('Data matrix must be numeric.');
192 elseif length(size((data)))>2
193 error('Data matrix has too many dimensions!');
194 else
195 d=size(data,2);
196 N=size(data,1);
197 end
198
199 if any(data(:)<0)
200 error('Negative data values not allowed in pie plots!');
201 end
202
203 % Check lattice
204 if ~ischar(lattice) | ~any(strcmp(lattice,{'hexa','rect'})),
205 error('Invalid lattice.');
206 end
207
208 %% Calculate patch coordinates for slices
209
210 for i=1:N,
211 [nx,ny]=vis_piepatch(data(i,:));
212 piesx(:,(1+(i-1)*d):(i*d))=nx;
213 piesy(:,(1+(i-1)*d):(i*d))=ny;
214 end
215 l=size(piesx,1);
216
217 if size(msize,1) == 1,
218 if prod(msize) ~= N
219 error('Data matrix has wrong size.');
220 else
221 coord=som_vis_coords(lattice, msize);
222 end
223 else
224 if N ~= size(msize,1),
225 error('Data matrix has wrong size.');
226 end
227 coord=msize;
228 % This turns the axis tightening off,
229 % as now we don't now the limits (no fixed grid)
230 if isnan(pos); pos=[0 0]; end
231 end
232 x=reshape(repmat(coord(:,1),1,l*d)',l,d*N);
233 y=reshape(repmat(coord(:,2),1,l*d)',l,d*N);
234
235 % Check size
236
237 if nargin < 5 | isempty(s),
238 s=0.8; % default value for scaling
239 elseif ~vis_valuetype(s, {'1x1', [N 1], [N d]}),
240 error('Size matrix does not match with the data matrix.');
241 elseif size(s) == [N 1],
242 s=reshape(repmat(s,1,l*d)',l,d*N);
243 elseif all(size(s) ~= [1 1]),
244 s=reshape(repmat(reshape(s',d*N,1),1,l)',l,d*N);
245 end
246
247 % Check color
248 % C_FLAG is a flag for color 'none'
249
250 if nargin < 4 | isempty(color)
251 color=hsv(d); C_FLAG=0; % default n hsv colors
252 end
253
254 if ~(vis_valuetype(color, {[d 3], 'nx3rgb'},'all')) & ...
255 ~vis_valuetype(color,{'colorstyle','1x3rgb'}),
256 error('The color matrix has wrong size or contains invalid values.');
257 elseif ischar(color) & strcmp(color,'none'),
258 C_FLAG=1; % check for color 'none'
259 color='w';
260 else
261 C_FLAG=0; % valid color string or colormap
262 end
263
264 %% Action %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
265
266 % Size zero would cause division by zero. eps is as good (node disappears)
267 % The edge may be visible, though. (NaN causes some other problems)
268
269 s(s==0)=eps;
270
271 %% 1. Scaling
272 x=(x./s+piesx).*s; y=(y./s+piesy).*s;
273
274 %% 2. Translation
275 if ~isnan(pos)
276 x=x+pos(1);y=y+pos(2);
277 end
278
279 %% 3. Rearrange dx3 color matrix
280
281 if ~isstr(color) & size(color,1)~=1,
282 color=reshape(repmat(color,N,1),[1 N*d 3]);
283 end
284
285 %% Set axes properties
286 ax=newplot; % get current axis
287 vis_PlaneAxisProperties(ax,lattice, msize, pos);
288
289 %% Draw the plane!
290
291 h_=patch(x,y,color);
292
293 if C_FLAG
294 set(h_,'FaceColor','none');
295 end
296
297 set(h_,'Tag','planePie'); % tag the object
298
299 %%% Build output %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
300
301 if nargout>0, h=h_; end % Set h only if
302 % there really is output
303 %%% Subfunctions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
304
305 function [x,y]=vis_piepatch(v)
306
307 % Do a pie (see e.g. the MathWorks function PIE).
308 % Origin is at (0,0) and the radius is .5.
309
310 N=25;
311
312 if sum(v)==0, v_is_zero = 1; v(1) = 1; else v_is_zero = 0; end
313
314 v(v==0) = eps; % Matlab 5.2 version of linspace doesn't work otherwise
315
316 phi=[0 2*pi*cumsum(v./sum(v))];
317
318 for i=2:length(phi),
319 [xi,yi]=pol2cart(linspace(phi(i-1),phi(i),N),0.5);
320 x(:,i-1)=[0 xi 0]';
321 y(:,i-1)=[0 yi 0]';
322 end
323
324 if v_is_zero, x = x*0; y = y*0; end
325