comparison toolboxes/MIRtoolbox1.3.2/somtoolbox/som_demo2.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1
2 %SOM_DEMO2 Basic usage of the SOM Toolbox.
3
4 % Contributed to SOM Toolbox 2.0, February 11th, 2000 by Juha Vesanto
5 % http://www.cis.hut.fi/projects/somtoolbox/
6
7 % Version 1.0beta juuso 071197
8 % Version 2.0beta juuso 070200
9
10 clf reset;
11 figure(gcf)
12 echo on
13
14
15
16 clc
17 % ==========================================================
18 % SOM_DEMO2 - BASIC USAGE OF SOM TOOLBOX
19 % ==========================================================
20
21 % som_data_struct - Create a data struct.
22 % som_read_data - Read data from file.
23 %
24 % som_normalize - Normalize data.
25 % som_denormalize - Denormalize data.
26 %
27 % som_make - Initialize and train the map.
28 %
29 % som_show - Visualize map.
30 % som_show_add - Add markers on som_show visualization.
31 % som_grid - Visualization with free coordinates.
32 %
33 % som_autolabel - Give labels to map.
34 % som_hits - Calculate hit histogram for the map.
35
36 % BASIC USAGE OF THE SOM TOOLBOX
37
38 % The basic usage of the SOM Toolbox proceeds like this:
39 % 1. construct data set
40 % 2. normalize it
41 % 3. train the map
42 % 4. visualize map
43 % 5. analyse results
44
45 % The four first items are - if default options are used - very
46 % simple operations, each executable with a single command. For
47 % the last, several different kinds of functions are provided in
48 % the Toolbox, but as the needs of analysis vary, a general default
49 % function or procedure does not exist.
50
51 pause % Strike any key to construct data...
52
53
54
55 clc
56 % STEP 1: CONSTRUCT DATA
57 % ======================
58
59 % The SOM Toolbox has a special struct, called data struct, which
60 % is used to group information regarding the data set in one
61 % place.
62
63 % Here, a data struct is created using function SOM_DATA_STRUCT.
64 % First argument is the data matrix itself, then is the name
65 % given to the data set, and the names of the components
66 % (variables) in the data matrix.
67
68 D = rand(1000,3); % 1000 samples from unit cube
69 sData = som_data_struct(D,'name','unit cube','comp_names',{'x','y','z'});
70
71 % Another option is to read the data directly from an ASCII file.
72 % Here, the IRIS data set is loaded from a file (please make sure
73 % the file can be found from the current path):
74
75 try,
76 sDiris = som_read_data('iris.data');
77 catch
78 echo off
79
80 warning('File ''iris.data'' not found. Using simulated data instead.')
81
82 D = randn(50,4);
83 D(:,1) = D(:,1)+5; D(:,2) = D(:,2)+3.5;
84 D(:,3) = D(:,3)/2+1.5; D(:,4) = D(:,4)/2+0.3;
85 D(find(D(:)<=0)) = 0.01;
86
87 D2 = randn(100,4); D2(:,2) = sort(D2(:,2));
88 D2(:,1) = D2(:,1)+6.5; D2(:,2) = D2(:,2)+2.8;
89 D2(:,3) = D2(:,3)+5; D2(:,4) = D2(:,4)/2+1.5;
90 D2(find(D2(:)<=0)) = 0.01;
91
92 sDiris = som_data_struct([D; D2],'name','iris (simulated)',...
93 'comp_names',{'SepalL','SepalW','PetalL','PetalW'});
94 sDiris = som_label(sDiris,'add',[1:50]','Setosa');
95 sDiris = som_label(sDiris,'add',[51:100]','Versicolor');
96 sDiris = som_label(sDiris,'add',[101:150]','Virginica');
97
98 echo on
99 end
100
101 % Here are the histograms and scatter plots of the four variables.
102
103 echo off
104 k=1;
105 for i=1:4,
106 for j=1:4,
107 if i==j,
108 subplot(4,4,k);
109 hist(sDiris.data(:,i)); title(sDiris.comp_names{i})
110 elseif i<j,
111 subplot(4,4,k);
112 plot(sDiris.data(:,i),sDiris.data(:,j),'k.')
113 xlabel(sDiris.comp_names{i})
114 ylabel(sDiris.comp_names{j})
115 end
116 k=k+1;
117 end
118 end
119 echo on
120
121 % Actually, as you saw in SOM_DEMO1, most SOM Toolbox functions
122 % can also handle plain data matrices, but then one is without the
123 % convenience offered by component names, labels and
124 % denormalization operations.
125
126
127 pause % Strike any key to normalize the data...
128
129
130
131
132
133 clc
134 % STEP 2: DATA NORMALIZATION
135 % ==========================
136
137 % Since SOM algorithm is based on Euclidian distances, the scale of
138 % the variables is very important in determining what the map will
139 % be like. If the range of values of some variable is much bigger
140 % than of the other variables, that variable will probably dominate
141 % the map organization completely.
142
143 % For this reason, the components of the data set are usually
144 % normalized, for example so that each component has unit
145 % variance. This can be done with function SOM_NORMALIZE:
146
147 sDiris = som_normalize(sDiris,'var');
148
149 % The function has also other normalization methods.
150
151 % However, interpreting the values may be harder when they have
152 % been normalized. Therefore, the normalization operations can be
153 % reversed with function SOM_DENORMALIZE:
154
155 x = sDiris.data(1,:)
156
157 orig_x = som_denormalize(x,sDiris)
158
159 pause % Strike any key to to train the map...
160
161
162
163
164
165 clc
166 % STEP 3: MAP TRAINING
167 % ====================
168
169 % The function SOM_MAKE is used to train the SOM. By default, it
170 % first determines the map size, then initializes the map using
171 % linear initialization, and finally uses batch algorithm to train
172 % the map. Function SOM_DEMO1 has a more detailed description of
173 % the training process.
174
175 sMap = som_make(sDiris);
176
177
178 pause % Strike any key to continues...
179
180 % The IRIS data set also has labels associated with the data
181 % samples. Actually, the data set consists of 50 samples of three
182 % species of Iris-flowers (a total of 150 samples) such that the
183 % measurements are width and height of sepal and petal leaves. The
184 % label associated with each sample is the species information:
185 % 'Setosa', 'Versicolor' or 'Virginica'.
186
187 % Now, the map can be labelled with these labels. The best
188 % matching unit of each sample is found from the map, and the
189 % species label is given to the map unit. Function SOM_AUTOLABEL
190 % can be used to do this:
191
192 sMap = som_autolabel(sMap,sDiris,'vote');
193
194 pause % Strike any key to visualize the map...
195
196
197
198
199
200 clc
201 % STEP 4: VISUALIZING THE SELF-ORGANIZING MAP: SOM_SHOW
202 % =====================================================
203
204 % The basic visualization of the SOM is done with function SOM_SHOW.
205
206 colormap(1-gray)
207 som_show(sMap,'norm','d')
208
209 % Notice that the names of the components are included as the
210 % titles of the subplots. Notice also that the variable values
211 % have been denormalized to the original range and scale.
212
213 % The component planes ('PetalL', 'PetalW', 'SepalL' and 'SepalW')
214 % show what kind of values the prototype vectors of the map units
215 % have. The value is indicated with color, and the colorbar on the
216 % right shows what the colors mean.
217
218 % The 'U-matrix' shows distances between neighboring units and thus
219 % visualizes the cluster structure of the map. Note that the
220 % U-matrix visualization has much more hexagons that the
221 % component planes. This is because distances *between* map units
222 % are shown, and not only the distance values *at* the map units.
223
224 % High values on the U-matrix mean large distance between
225 % neighboring map units, and thus indicate cluster
226 % borders. Clusters are typically uniform areas of low
227 % values. Refer to colorbar to see which colors mean high
228 % values. In the IRIS map, there appear to be two clusters.
229
230 pause % Strike any key to continue...
231
232 % The subplots are linked together through similar position. In
233 % each axis, a particular map unit is always in the same place. For
234 % example:
235
236 h=zeros(sMap.topol.msize); h(1,2) = 1;
237 som_show_add('hit',h(:),'markercolor','r','markersize',0.5,'subplot','all')
238
239 % the red marker is on top of the same unit on each axis.
240
241 pause % Strike any key to continue...
242
243
244
245 clf
246
247 clc
248
249 % STEP 4: VISUALIZING THE SELF-ORGANIZING MAP: SOM_SHOW_ADD
250 % =========================================================
251
252 % The SOM_SHOW_ADD function can be used to add markers, labels and
253 % trajectories on top of SOM_SHOW created figures. The function
254 % SOM_SHOW_CLEAR can be used to clear them away.
255
256 % Here, the U-matrix is shown on the left, and an empty grid
257 % named 'Labels' is shown on the right.
258
259 som_show(sMap,'umat','all','empty','Labels')
260
261 pause % Strike any key to add labels...
262
263 % Here, the labels added to the map with SOM_AUTOLABEL function
264 % are shown on the empty grid.
265
266 som_show_add('label',sMap,'Textsize',8,'TextColor','r','Subplot',2)
267
268 pause % Strike any key to add hits...
269
270 % An important tool in data analysis using SOM are so called hit
271 % histograms. They are formed by taking a data set, finding the BMU
272 % of each data sample from the map, and increasing a counter in a
273 % map unit each time it is the BMU. The hit histogram shows the
274 % distribution of the data set on the map.
275
276 % Here, the hit histogram for the whole data set is calculated
277 % and visualized on the U-matrix.
278
279 h = som_hits(sMap,sDiris);
280 som_show_add('hit',h,'MarkerColor','w','Subplot',1)
281
282 pause % Strike any key to continue...
283
284 % Multiple hit histograms can be shown simultaniously. Here, three
285 % hit histograms corresponding to the three species of Iris
286 % flowers is calculated and shown.
287
288 % First, the old hit histogram is removed.
289
290 som_show_clear('hit',1)
291
292 % Then, the histograms are calculated. The first 50 samples in
293 % the data set are of the 'Setosa' species, the next 50 samples
294 % of the 'Versicolor' species and the last 50 samples of the
295 % 'Virginica' species.
296
297 h1 = som_hits(sMap,sDiris.data(1:50,:));
298 h2 = som_hits(sMap,sDiris.data(51:100,:));
299 h3 = som_hits(sMap,sDiris.data(101:150,:));
300
301 som_show_add('hit',[h1, h2, h3],'MarkerColor',[1 0 0; 0 1 0; 0 0 1],'Subplot',1)
302
303 % Red color is for 'Setosa', green for 'Versicolor' and blue for
304 % 'Virginica'. One can see that the three species are pretty well
305 % separated, although 'Versicolor' and 'Virginica' are slightly
306 % mixed up.
307
308 pause % Strike any key to continue...
309
310
311
312 clf
313 clc
314
315 % STEP 4: VISUALIZING THE SELF-ORGANIZING MAP: SOM_GRID
316 % =====================================================
317
318 % There's also another visualization function: SOM_GRID. This
319 % allows visualization of the SOM in freely specified coordinates,
320 % for example the input space (of course, only upto 3D space). This
321 % function has quite a lot of options, and is pretty flexible.
322
323 % Basically, the SOM_GRID visualizes the SOM network: each unit is
324 % shown with a marker and connected to its neighbors with lines.
325 % The user has control over:
326 % - the coordinate of each unit (2D or 3D)
327 % - the marker type, color and size of each unit
328 % - the linetype, color and width of the connecting lines
329 % There are also some other options.
330
331 pause % Strike any key to see some visualizations...
332
333 % Here are four visualizations made with SOM_GRID:
334 % - The map grid in the output space.
335
336 subplot(2,2,1)
337 som_grid(sMap,'Linecolor','k')
338 view(0,-90), title('Map grid')
339
340 % - A surface plot of distance matrix: both color and
341 % z-coordinate indicate average distance to neighboring
342 % map units. This is closely related to the U-matrix.
343
344 subplot(2,2,2)
345 Co=som_unit_coords(sMap); U=som_umat(sMap); U=U(1:2:size(U,1),1:2:size(U,2));
346 som_grid(sMap,'Coord',[Co, U(:)],'Surf',U(:),'Marker','none');
347 view(-80,45), axis tight, title('Distance matrix')
348
349 % - The map grid in the output space. Three first components
350 % determine the 3D-coordinates of the map unit, and the size
351 % of the marker is determined by the fourth component.
352 % Note that the values have been denormalized.
353
354 subplot(2,2,3)
355 M = som_denormalize(sMap.codebook,sMap);
356 som_grid(sMap,'Coord',M(:,1:3),'MarkerSize',M(:,4)*2)
357 view(-80,45), axis tight, title('Prototypes')
358
359 % - Map grid as above, but the original data has been plotted
360 % also: coordinates show the values of three first components
361 % and color indicates the species of each sample. Fourth
362 % component is not shown.
363
364 subplot(2,2,4)
365 som_grid(sMap,'Coord',M(:,1:3),'MarkerSize',M(:,4)*2)
366 hold on
367 D = som_denormalize(sDiris.data,sDiris);
368 plot3(D(1:50,1),D(1:50,2),D(1:50,3),'r.',...
369 D(51:100,1),D(51:100,2),D(51:100,3),'g.',...
370 D(101:150,1),D(101:150,2),D(101:150,3),'b.')
371 view(-72,64), axis tight, title('Prototypes and data')
372
373 pause % Strike any key to continue...
374
375 % STEP 5: ANALYSIS OF RESULTS
376 % ===========================
377
378 % The purpose of this step highly depends on the purpose of the
379 % whole data analysis: is it segmentation, modeling, novelty
380 % detection, classification, or something else? For this reason,
381 % there is not a single general-purpose analysis function, but
382 % a number of individual functions which may, or may not, prove
383 % useful in any specific case.
384
385 % Visualization is of course part of the analysis of
386 % results. Examination of labels and hit histograms is another
387 % part. Yet another is validation of the quality of the SOM (see
388 % the use of SOM_QUALITY in SOM_DEMO1).
389
390 [qe,te] = som_quality(sMap,sDiris)
391
392 % People have contributed a number of functions to the Toolbox
393 % which can be used for the analysis. These include functions for
394 % vector projection, clustering, pdf-estimation, modeling,
395 % classification, etc. However, ultimately the use of these
396 % tools is up to you.
397
398 % More about visualization is presented in SOM_DEMO3.
399 % More about data analysis is presented in SOM_DEMO4.
400
401 echo off
402 warning on
403
404
405
406