comparison toolboxes/MIRtoolbox1.3.2/somtoolbox/som_bmus.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function [Bmus,Qerrors] = som_bmus(sMap, sData, which_bmus, mask)
2
3 %SOM_BMUS Find the best-matching units from the map for the given vectors.
4 %
5 % [Bmus, Qerrors] = som_bmus(sMap, sData, [which], [mask])
6 %
7 % bmus = som_bmus(sM,sD);
8 % [bmus,qerrs] = som_bmus(sM,D,[1 2 3]);
9 % bmus = som_bmus(sM,D,1,[1 1 0 0 1]);
10 %
11 % Input and output arguments ([]'s are optional):
12 % sMap (struct) map struct
13 % (matrix) codebook matrix, size munits x dim
14 % sData (struct) data struct
15 % (matrix) data matrix, size dlen x dim
16 % [which] (vector) which BMUs are returned, [1] by default
17 % (string) 'all', 'best' or 'worst' meaning [1:munits],
18 % [1] and [munits] respectively
19 % [mask] (vector) mask vector, length=dim, sMap.mask by default
20 %
21 % Bmus (matrix) the requested BMUs for each data vector,
22 % size dlen x length(which)
23 % Qerrors (matrix) the corresponding quantization errors, size as Bmus
24 %
25 % NOTE: for a vector with all components NaN's, bmu=NaN and qerror=NaN
26 % NOTE: the mask also effects the quantization errors
27 %
28 % For more help, try 'type som_bmus' or check out online documentation.
29 % See also SOM_QUALITY.
30
31 %%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
32 %
33 % som_bmus
34 %
35 % PURPOSE
36 %
37 % Finds Best-Matching Units (BMUs) for given data vector from a given map.
38 %
39 % SYNTAX
40 %
41 % Bmus = som_bmus(sMap, sData)
42 % Bmus = som_bmus(..., which)
43 % Bmus = som_bmus(..., which, mask)
44 % [Bmus, Qerrs] = som_bmus(...)
45 %
46 % DESCRIPTION
47 %
48 % Returns the indexes and corresponding quantization errors of the
49 % vectors in sMap that best matched the vectors in sData.
50 %
51 % By default only the index of the best matching unit (/vector) is
52 % returned, but the 'which' argument can be used to get others as
53 % well. For example it might be desirable to get also second- and
54 % third-best matching units as well (which = [1:3]).
55 %
56 % A mask can be used to weight the search process. The mask is used to
57 % weight the influence of components in the distance calculation, as
58 % follows:
59 %
60 % distance(x,y) = (x-y)' diag(mask) (x-y)
61 %
62 % where x and y are two vectors, and diag(mask) is a diagonal matrix with
63 % the elements of mask vector on the diagonal.
64 %
65 % The vectors in the data set (sData) can contain unknown components
66 % (NaNs), but the map (sMap) cannot. If there are completely empty
67 % vectors (all NaNs), the returned BMUs and quantization errors for those
68 % vectors are NaNs.
69 %
70 % REQUIRED INPUT ARGUMENTS
71 %
72 % sMap The vectors from among which the BMUs are searched
73 % for. These must not have any unknown components (NaNs).
74 % (struct) map struct
75 % (matrix) codebook matrix, size munits x dim
76 %
77 % sData The data vector(s) for which the BMUs are searched.
78 % (struct) data struct
79 % (matrix) data matrix, size dlen x dim
80 %
81 % OPTIONAL INPUT ARGUMENTS
82 %
83 % which (vector) which BMUs are returned,
84 % by default only the best (ie. which = [1])
85 % (string) 'all', 'best' or 'worst' meaning [1:munits],
86 % [1] and [munits] respectively
87 % mask (vector) mask vector to be used in BMU search,
88 % by default sMap.mask, or ones(dim,1) in case
89 % a matrix was given
90 %
91 % OUTPUT ARGUMENTS
92 %
93 % Bmus (matrix) the requested BMUs for each data vector,
94 % size dlen x length(which)
95 % Qerrors (matrix) the corresponding quantization errors,
96 % size equal to that of Bmus
97 %
98 % EXAMPLES
99 %
100 % Simplest case:
101 % bmu = som_bmus(sM, [0.3 -0.4 1.0]);
102 % % 3-dimensional data, returns BMU for vector [0.3 -0.4 1]
103 % bmu = som_bmus(sM, [0.3 -0.4 1.0], [3 5]);
104 % % as above, except returns the 3rd and 5th BMUs
105 % bmu = som_bmus(sM, [0.3 -0.4 1.0], [], [1 0 1]);
106 % % as above, except ignores second component in searching
107 % [bmus qerrs] = som_bmus(sM, D);
108 % % returns BMUs and corresponding quantization errors
109 % % for each vector in D
110 % bmus = som_bmus(sM, sD);
111 % % returns BMUs for each vector in sD using the mask in sM
112 %
113 % SEE ALSO
114 %
115 % som_quality Measure the quantization and topographic error of a SOM.
116
117 % Copyright (c) 1997-2000 by the SOM toolbox programming team.
118 % http://www.cis.hut.fi/projects/somtoolbox/
119
120 % Version 1.0beta juuso 071197, 101297
121 % Version 2.0alpha juuso 201198 080200
122
123 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
124 %% check arguments and initialize
125
126 error(nargchk(1, 4, nargin)); % check no. of input args is correct
127
128 % sMap
129 if isstruct(sMap),
130 switch sMap.type,
131 case 'som_map', M = sMap.codebook;
132 case 'som_data', M = sMap.data;
133 otherwise, error('Invalid 1st argument.');
134 end
135 else
136 M = sMap;
137 end
138 [munits dim] = size(M);
139 if any(any(isnan(M))),
140 error ('Map codebook must not have missing components.');
141 end
142
143 % data
144 if isstruct(sData),
145 switch sData.type,
146 case 'som_map', D = sData.codebook;
147 case 'som_data', D = sData.data;
148 otherwise, error('Invalid 2nd argument.');
149 end
150 else
151 D = sData;
152 end
153 [dlen ddim] = size(D);
154 if dim ~= ddim,
155 error('Data and map dimensions do not match.')
156 end
157
158 % which_bmus
159 if nargin < 3 | isempty(which_bmus) | any(isnan(which_bmus)),
160 which_bmus = 1;
161 else
162 if ischar(which_bmus),
163 switch which_bmus,
164 case 'best', which_bmus = 1;
165 case 'worst', which_bmus = munits;
166 case 'all', which_bmus = [1:munits];
167 end
168 end
169 end
170
171 % mask
172 if nargin < 4 | isempty(mask) | any(isnan(mask)),
173 if isstruct(sMap) & strcmp(sMap.type,'som_map'),
174 mask = sMap.mask;
175 elseif isstruct(sData) & strcmp(sData.type,'som_map'),
176 mask = sData.mask;
177 else
178 mask = ones(dim,1);
179 end
180 end
181 if size(mask,1)==1, mask = mask'; end
182 if all(mask == 0),
183 error('All components masked off. BMU search cannot be done.');
184 end
185
186 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
187 %% action
188
189 Bmus = zeros(dlen,length(which_bmus));
190 Qerrors = Bmus;
191
192 % The BMU search involves calculating weighted Euclidian distances
193 % to all map units for each data vector. Basically this is done as
194 % for i=1:dlen,
195 % for j=1:munits,
196 % for k=1:dim,
197 % Dist(j,i) = Dist(j,i) + mask(k) * (D(i,k) - M(j,k))^2;
198 % end
199 % end
200 % end
201 % where mask is the weighting vector for distance calculation. However, taking
202 % into account that distance between vectors m and v can be expressed as
203 % |m - v|^2 = sum_i ((m_i - v_i)^2) = sum_i (m_i^2 + v_i^2 - 2*m_i*v_i)
204 % this can be made much faster by transforming it to a matrix operation:
205 % Dist = (M.^2)*mask*ones(1,d) + ones(m,1)*mask'*(D'.^2) - 2*M*diag(mask)*D'
206 %
207 % In the case where there are unknown components in the data, each data
208 % vector will have an individual mask vector so that for that unit, the
209 % unknown components are not taken into account in distance calculation.
210 % In addition all NaN's are changed to zeros so that they don't screw up
211 % the matrix multiplications.
212
213 % calculate distances & bmus
214
215 % This is done a block of data at a time rather than in a
216 % single sweep to save memory consumption. The 'Dist' matrix has
217 % size munits*blen which would be HUGE if you did it in a single-sweep
218 % operation. If you _want_ to use the single-sweep version, just
219 % set blen = dlen. If you're having problems with memory, try to
220 % set the value of blen lower.
221 blen = min(munits,dlen);
222
223 % handle unknown components
224 Known = ~isnan(D);
225 W1 = (mask*ones(1,dlen)) .* Known';
226 D(find(~Known)) = 0;
227 unknown = find(sum(Known')==0); % completely unknown vectors
228
229 % constant matrices
230 WD = 2*diag(mask)*D'; % constant matrix
231 dconst = ((D.^2)*mask); % constant term in the distances
232
233 i0 = 0;
234 while i0+1<=dlen,
235 % calculate distances
236 inds = [(i0+1):min(dlen,i0+blen)]; i0 = i0+blen;
237 Dist = (M.^2)*W1(:,inds) - M*WD(:,inds); % plus dconst for each sample
238
239 % find the bmus and the corresponding quantization errors
240 if all(which_bmus==1), [Q B] = min(Dist); else [Q B] = sort(Dist); end
241 if munits==1, Bmus(inds,:) = 1; else Bmus(inds,:) = B(which_bmus,:)'; end
242 Qerrors(inds,:) = Q(which_bmus,:)' + dconst(inds,ones(length(which_bmus),1));
243 end
244
245 % completely unknown vectors
246 if ~isempty(unknown),
247 Bmus(unknown,:) = NaN;
248 Qerrors(unknown,:) = NaN;
249 end
250
251 Qerrors = sqrt(Qerrors);
252
253 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%