Mercurial > hg > camir-aes2014
comparison toolboxes/MIRtoolbox1.3.2/somtoolbox/pcaproj.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function [P,V,me,l] = pcaproj(D,arg1,arg2) | |
2 | |
3 %PCAPROJ Projects data vectors using Principal Component Analysis. | |
4 % | |
5 % [P,V,me,l] = pcaproj(D, odim) | |
6 % P = pcaproj(D, V, me) | |
7 % | |
8 % Input and output arguments ([]'s are optional) | |
9 % D (matrix) size dlen x dim, the data matrix | |
10 % (struct) data or map struct | |
11 % odim (scalar) how many principal vectors are used | |
12 % | |
13 % P (matrix) size dlen x odim, the projections | |
14 % V (matrix) size dim x odim, principal eigenvectors (unit length) | |
15 % me (vector) size 1 x dim, center point of D | |
16 % l (vector) size 1 x odim, the corresponding eigenvalues, | |
17 % relative to total sum of eigenvalues | |
18 % | |
19 % See also SAMMON, CCA. | |
20 | |
21 % Contributed to SOM Toolbox 2.0, February 2nd, 2000 by Juha Vesanto | |
22 % Copyright (c) by Juha Vesanto | |
23 % http://www.cis.hut.fi/projects/somtoolbox/ | |
24 | |
25 % juuso 191297 070200 | |
26 | |
27 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
28 | |
29 error(nargchk(2, 3, nargin)); % check the number of input arguments | |
30 | |
31 % the data | |
32 if isstruct(D), | |
33 if strcmp(D.type,'som_map'), D=D.codebook; else D=D.data; end | |
34 end | |
35 [dlen dim] = size(D); | |
36 | |
37 if nargin==2, | |
38 | |
39 odim = arg1; | |
40 | |
41 % autocorrelation matrix | |
42 A = zeros(dim); | |
43 me = zeros(1,dim); | |
44 for i=1:dim, | |
45 me(i) = mean(D(isfinite(D(:,i)),i)); | |
46 D(:,i) = D(:,i) - me(i); | |
47 end | |
48 for i=1:dim, | |
49 for j=i:dim, | |
50 c = D(:,i).*D(:,j); c = c(isfinite(c)); | |
51 A(i,j) = sum(c)/length(c); A(j,i) = A(i,j); | |
52 end | |
53 end | |
54 | |
55 % eigenvectors, sort them according to eigenvalues, and normalize | |
56 [V,S] = eig(A); | |
57 eigval = diag(S); | |
58 [y,ind] = sort(abs(eigval)); | |
59 eigval = eigval(flipud(ind)); | |
60 V = V(:,flipud(ind)); | |
61 for i=1:odim, V(:,i) = (V(:,i) / norm(V(:,i))); end | |
62 | |
63 % take only odim first eigenvectors | |
64 V = V(:,1:odim); | |
65 l = abs(eigval)/sum(abs(eigval)); | |
66 l = l(1:odim); | |
67 | |
68 else % nargin==3, | |
69 | |
70 V = arg1; | |
71 me = arg2; | |
72 odim = size(V,2); | |
73 D = D-me(ones(dlen,1),:); | |
74 | |
75 end | |
76 | |
77 % project the data using odim first eigenvectors | |
78 P = D*V; | |
79 | |
80 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |