Mercurial > hg > camir-aes2014
comparison toolboxes/MIRtoolbox1.3.2/MIRToolbox/mirnovelty.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function varargout = mirnovelty(orig,varargin) | |
2 % n = mirnovelty(m) evaluates the novelty score from a similarity matrix. | |
3 % [n,m] = mirnovelty(m) also return the similarity matrix. | |
4 % Optional argument: | |
5 % mirnovelty(...,'Distance',f) specifies the name of a dissimilarity | |
6 % distance function, from those proposed in the Statistics Toolbox | |
7 % (help pdist). | |
8 % default value: f = 'cosine' | |
9 % mirnovelty(...,'Similarity',f) specifies the name of a similarity | |
10 % measure function. This function is applied to the result of the | |
11 % distance function. cf. mirsimatrix | |
12 % default value: f = 'exponential' | |
13 % corresponding to f(x) = exp(-x) | |
14 % mirnovelty(...,'KernelSize',s) or more simply mirnovelty(...,s) | |
15 % specifies the length of the gaussian kernel, in samples. | |
16 % default value: s = 64. | |
17 % mirnovelty(...,'Normal',0) does not normalize the novelty curve | |
18 % between the values 0 and 1. | |
19 % | |
20 % Foote, J. & Cooper, M. (2003). Media Segmentation using Self-Similarity | |
21 % Decomposition,. In Proc. SPIE Storage and Retrieval for Multimedia | |
22 % Databases, Vol. 5021, pp. 167-75. | |
23 | |
24 dist.key = 'Distance'; | |
25 dist.type = 'String'; | |
26 dist.default = 'cosine'; | |
27 option.dist = dist; | |
28 | |
29 sm.key = {'Measure','Similarity'}; | |
30 sm.type = 'String'; | |
31 sm.default = 'exponential'; | |
32 option.sm = sm; | |
33 | |
34 K.key = {'KernelSize','Width'}; | |
35 K.type = 'Integer'; | |
36 K.default = 64; | |
37 option.K = K; | |
38 | |
39 transf.type = 'String'; | |
40 transf.default = 'TimeLag'; | |
41 transf.choice = {'Horizontal','TimeLag'}; | |
42 option.transf = transf; | |
43 | |
44 normal.key = 'Normal'; | |
45 normal.type = 'Boolean'; | |
46 normal.default = 1; | |
47 normal.when = 'After'; | |
48 option.normal = normal; | |
49 | |
50 specif.option = option; | |
51 specif.combineframes = @combineframes; | |
52 specif.nochunk = 1; | |
53 varargout = mirfunction(@mirnovelty,orig,varargin,nargout,specif,@init,@main); | |
54 | |
55 | |
56 function [x type] = init(x,option) | |
57 type = 'mirscalar'; | |
58 if not(isamir(x,'mirscalar') && strcmp(get(x,'Title'),'Novelty')) | |
59 x = mirsimatrix(x,'Distance',option.dist,'Similarity',option.sm,... | |
60 'Width',option.K,option.transf); | |
61 end | |
62 if isa(x,'mirdesign') | |
63 x = set(x,'Overlap',ceil(option.K)); | |
64 end | |
65 | |
66 | |
67 function y = main(orig,option,postoption) | |
68 if iscell(orig) | |
69 orig = orig{1}; | |
70 end | |
71 if not(isa(orig,'mirscalar')) | |
72 s = get(orig,'Data'); | |
73 dw = get(orig,'DiagWidth'); | |
74 for k = 1:length(s) | |
75 if isnumeric(dw) | |
76 dwk = dw; | |
77 else | |
78 dwk = dw{k}; | |
79 end | |
80 if option.K | |
81 cgs = min(option.K,dwk); | |
82 else | |
83 cgs = dwk; | |
84 end | |
85 cg = checkergauss(cgs,option.transf); | |
86 disp('Computing convolution, please wait...') | |
87 for z = 1:length(s{k}) | |
88 sz = s{k}{z}; | |
89 szm = max(max(sz)); | |
90 for i = find(isnan(sz)) | |
91 sz(i) = szm; | |
92 end | |
93 cv = convolve2(sz,cg,'same'); | |
94 nl = size(cv,1); | |
95 nc = size(cv,2); | |
96 if nl == 0 | |
97 warning('WARNING IN NOVELTY: No frame decomposition. The novelty score cannot be computed.'); | |
98 score{k}{z} = []; | |
99 else | |
100 sco = cv(floor(size(cv,1)/2),:); | |
101 incr = find(diff(sco)>=0); | |
102 if not(isempty(incr)) | |
103 decr = find(diff(sco)<=0); | |
104 sco(1:incr(1)-1) = NaN(1,incr(1)-1); | |
105 if not(isempty(decr)) | |
106 sco(decr(end)+1:end) = NaN(1,length(sco)-decr(end)); | |
107 end | |
108 incr = find(diff(sco)>=0); | |
109 sco2 = sco; | |
110 if not(isempty(incr)) | |
111 sco2 = sco2(1:incr(end)+1); | |
112 end | |
113 decr = find(diff(sco)<=0); | |
114 if not(isempty(decr)) && decr(1)>2 | |
115 sco2 = sco2(decr(1)-1:end); | |
116 end | |
117 mins = min(sco2); | |
118 rang = find(sco>= mins); | |
119 if not(isempty(rang)) | |
120 sco(1:rang(1)-1) = NaN(1,rang(1)-1); | |
121 sco(rang(end)+1:end) = NaN(1,length(sco)-rang(end)); | |
122 end | |
123 end | |
124 score{k}{z} = sco; | |
125 end | |
126 end | |
127 end | |
128 else | |
129 score = get(orig,'Data'); | |
130 end | |
131 if not(isempty(postoption)) && postoption.normal | |
132 for k = 1:length(score) | |
133 for l = 1:length(score{k}) | |
134 sco = score{k}{l}; | |
135 sco = (sco-min(sco))/(max(sco)-min(sco)); | |
136 score{k}{l} = sco; | |
137 end | |
138 end | |
139 end | |
140 n = mirscalar(orig,'Data',score,'Title','Novelty'); | |
141 y = {n orig}; | |
142 | |
143 | |
144 function old = combineframes(old,new) | |
145 if not(iscell(old)) | |
146 old = {old}; | |
147 end | |
148 if not(iscell(new)) | |
149 new = {new}; | |
150 end | |
151 for var = 1:length(new) | |
152 ov = old{var}; | |
153 nv = new{var}; | |
154 ofp = get(ov,'FramePos'); | |
155 ofp = ofp{1}{1}; | |
156 nfp = get(nv,'FramePos'); | |
157 nfp = nfp{1}{1}; | |
158 od = get(ov,'Data'); | |
159 od = od{1}{1}; | |
160 onan = find(isnan(od)); | |
161 od(onan) = []; | |
162 ofp(:,onan) = []; | |
163 nd = get(nv,'Data'); | |
164 nd = nd{1}{1}; | |
165 nnan = find(isnan(nd)); | |
166 nd(nnan) = []; | |
167 nfp(:,nnan) = []; | |
168 [unused omatch nmatch] = intersect(ofp(1,:),nfp(1,:)); | |
169 if isempty(omatch) | |
170 ov = set(ov,'FramePos',{{[ofp nfp]}},'Data',{{[od nd]}}); | |
171 else | |
172 lm = length(omatch); | |
173 ov = set(ov,'FramePos',{{[ofp(:,1:omatch(1)-1) nfp]}},... | |
174 'Data',{{[od(1:omatch(1)-1),... | |
175 (od(omatch).*(lm:-1:1) + nd(nmatch).*(1:lm))/(lm+1),... | |
176 nd(nmatch(end)+1:end)]}}); | |
177 end | |
178 old{var} = ov; | |
179 end | |
180 | |
181 | |
182 function y = checkergauss(N,transf) | |
183 hN = ceil(N/2); | |
184 if strcmpi(transf,'TimeLag') | |
185 y = zeros(hN,N); | |
186 for j = 1:N | |
187 for i = 1:hN | |
188 g = exp(-((i/hN)^2 + (((j-hN)/hN)^2))*4); | |
189 if j>hN && j<hN+i | |
190 y(hN-i+1,j) = -g; | |
191 else | |
192 y(hN-i+1,j) = g; | |
193 end | |
194 end | |
195 end | |
196 else | |
197 y = zeros(N); | |
198 for i = 1:N | |
199 for j = 1:N | |
200 g = exp(-(((i-hN)/hN)^2 + (((j-hN)/hN)^2))*4); | |
201 if xor(j>i,j>N-i) | |
202 y(i,j) = -g; | |
203 else | |
204 y(i,j) = g; | |
205 end | |
206 end | |
207 end | |
208 end |