Mercurial > hg > camir-aes2014
comparison toolboxes/MIRtoolbox1.3.2/MIRToolbox/mirdist.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function d = mirdist(x,y,dist) | |
2 % d = mirdist(x,y) evaluates the distance between x and y. | |
3 % x is the feature values corresponding to one audio file, and y is the | |
4 % values (for the same feature) corrdponding to one (or several) | |
5 % audio files. | |
6 % If x and y are not decomposed into frames, | |
7 % d = mirdist(x,y,f) specifies distance function. | |
8 % Default value: f = 'Cosine' | |
9 % If x and y are composed of clustered frames (using mircluster), the | |
10 % cluster signatures are compared using Earth Mover Distance. | |
11 % (Logan, Salomon, 2001) | |
12 % If x and y contains peaks, the vectors representing the peak | |
13 % distributions are compared using Euclidean distance. | |
14 % (used with mirnovelty in Jacobson, 2006) | |
15 % | |
16 % The Earth Mover Distance is based on the implementation by Yossi Rubner, | |
17 % wrapped for Matlab by Elias Pampalk. | |
18 | |
19 if not(isa(x,'mirdata')) | |
20 x = miraudio(x); | |
21 end | |
22 if not(isa(y,'mirdata')) | |
23 y = miraudio(y); | |
24 end | |
25 | |
26 clx = get(x,'Clusters'); | |
27 if isempty(clx{1}) | |
28 px = get(x,'PeakPos'); | |
29 if not(iscell(px)) || isempty(px{1}) || ... | |
30 not(iscell(px{1})) || isempty(px{1}{1}) || not(iscell(px{1}{1})) | |
31 if nargin < 3 | |
32 dist = 'Cosine'; | |
33 end | |
34 | |
35 d = get(x,'Data'); | |
36 dd = d{1}{1}; | |
37 if iscell(dd) | |
38 dd = dd{1}; | |
39 end | |
40 if size(dd,2)>1 | |
41 if size(dd,1)>1 | |
42 error('ERROR IN MIRDIST: If the input is decomposed into frames, they should first be clustered.'); | |
43 else | |
44 dd = dd'; | |
45 end | |
46 end | |
47 | |
48 e = get(y,'Data'); | |
49 dt = cell(1,length(e)); | |
50 for h = 1:length(e) | |
51 ee = e{h}{1}; | |
52 if iscell(ee) | |
53 ee = ee{1}; | |
54 end | |
55 if size(ee,2)>1 | |
56 if size(ee,1)>1 | |
57 error('ERROR IN MIRDIST: If the input is decomposed into frames, they should first be clustered.'); | |
58 else | |
59 ee = ee'; | |
60 end | |
61 end | |
62 if isempty(ee) | |
63 if isempty(dd) | |
64 dt{h}{1} = 0; | |
65 else | |
66 dt{h}{1} = Inf; | |
67 end | |
68 else | |
69 if length(dd)<length(ee) | |
70 dd(length(ee)) = 0; | |
71 %ee = ee(1:length(d)); | |
72 elseif length(ee)<length(dd) | |
73 ee(length(dd)) = 0; | |
74 %dd = dd(1:length(ee)); | |
75 end | |
76 if length(dd) == 1 | |
77 dt{h}{1} = abs(dd-ee); | |
78 elseif norm(dd) && norm(ee) | |
79 dt{h}{1} = pdist([dd(:)';ee(:)'],dist); | |
80 else | |
81 dt{h}{1} = NaN; | |
82 end | |
83 end | |
84 end | |
85 else | |
86 % Euclidean distance between vectors to compare data with peaks | |
87 % (used with mirnovelty in Jacobson, 2006). | |
88 sig = pi/4; | |
89 dx = get(x,'Data'); | |
90 nx = length(px{1}{1}{1}); | |
91 cx = mean(px{1}{1}{1}/length(dx{1}{1})); | |
92 dy = get(y,'Data'); | |
93 py = get(y,'PeakPos'); | |
94 dt = cell(1,length(py)); | |
95 for h = 1:length(py) | |
96 ny = length(py{h}{1}{1}); | |
97 cy = mean(py{h}{1}{1}/length(dy{h}{1})); | |
98 dt{h}{1} = sqrt((nx*cos(sig*cx)-ny*cos(sig*cy))^2 ... | |
99 +(nx*sin(sig*cx)-ny*sin(sig*cy))^2); | |
100 end | |
101 end | |
102 else | |
103 % Earth Mover's Distance to compare clustered data. | |
104 cly = get(y,'Clusters'); | |
105 dt = cell(1,length(cly)); | |
106 for h = 1:length(cly) | |
107 cost = zeros(length(clx{1}.weight),length(cly{h}.weight)); | |
108 for i = 1:length(clx{1}.weight) | |
109 for j = 1:length(cly{h}.weight) | |
110 covx = clx{1}.covar(:,i); | |
111 covy = cly{h}.covar(:,j); | |
112 mux = clx{1}.centr(:,i); | |
113 muy = cly{h}.centr(:,j); | |
114 cost(i,j) = sum(covx./covy + covy./covx + ... | |
115 (mux-muy).^2.*(1./covx + 1./covy) - 2); | |
116 end | |
117 end | |
118 dt{h}{1} = emd_wrapper(cost,clx{1}.weight,cly{h}.weight); | |
119 end | |
120 end | |
121 d = mirscalar(y,'Data',dt,'Title',[get(y,'Title'),' Distance'],... | |
122 'Name',get(x,'Name'),'Name2',get(y,'Name')); |