Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/netlabKPM/mlperr_weighted.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function [e, edata, eprior] = mlperr_weighted(net, x, t, eso_w) | |
2 %MLPERR Evaluate error function for 2-layer network. | |
3 % | |
4 % Description | |
5 % E = MLPERR(NET, X, T) takes a network data structure NET together | |
6 % with a matrix X of input vectors and a matrix T of target vectors, | |
7 % and evaluates the error function E. The choice of error function | |
8 % corresponds to the output unit activation function. Each row of X | |
9 % corresponds to one input vector and each row of T corresponds to one | |
10 % target vector. | |
11 % | |
12 % [E, EDATA, EPRIOR] = MLPERR(NET, X, T) additionally returns the data | |
13 % and prior components of the error, assuming a zero mean Gaussian | |
14 % prior on the weights with inverse variance parameters ALPHA and BETA | |
15 % taken from the network data structure NET. | |
16 % | |
17 % See also | |
18 % MLP, MLPPAK, MLPUNPAK, MLPFWD, MLPBKP, MLPGRAD | |
19 % | |
20 | |
21 % Copyright (c) Ian T Nabney (1996-9) | |
22 | |
23 % Check arguments for consistency | |
24 errstring = consist(net, 'mlp', x, t); | |
25 if ~isempty(errstring); | |
26 error(errstring); | |
27 end | |
28 [y, z, a] = mlpfwd(net, x); | |
29 | |
30 switch net.actfn | |
31 | |
32 case 'linear' %Linear outputs | |
33 | |
34 edata = 0.5*sum(sum((y - t).^2)); | |
35 | |
36 case 'logistic' % Logistic outputs | |
37 | |
38 % Ensure that log(1-y) is computable: need exp(a) > eps | |
39 maxcut = -log(eps); | |
40 % Ensure that log(y) is computable | |
41 mincut = -log(1/realmin - 1); | |
42 a = min(a, maxcut); | |
43 a = max(a, mincut); | |
44 y = 1./(1 + exp(-a)); | |
45 edata = - sum(sum(t.*log(y) + (1 - t).*log(1 - y))); | |
46 | |
47 case 'softmax' % Softmax outputs | |
48 | |
49 nout = size(a,2); | |
50 % Ensure that sum(exp(a), 2) does not overflow | |
51 maxcut = log(realmax) - log(nout); | |
52 % Ensure that exp(a) > 0 | |
53 mincut = log(realmin); | |
54 a = min(a, maxcut); | |
55 a = max(a, mincut); | |
56 temp = exp(a); | |
57 y = temp./(sum(temp, 2)*ones(1,nout)); | |
58 % Ensure that log(y) is computable | |
59 y(y<realmin) = realmin; | |
60 e_app=sum(t.*log(y),2); | |
61 edata = - eso_w'*e_app; | |
62 clear e_app; | |
63 | |
64 otherwise | |
65 error(['Unknown activation function ', net.actfn]); | |
66 end | |
67 | |
68 [e, edata, eprior] = errbayes(net, edata); |