comparison toolboxes/FullBNT-1.0.7/netlab3.3/rbftrain.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function [net, options] = rbftrain(net, options, x, t)
2 %RBFTRAIN Two stage training of RBF network.
3 %
4 % Description
5 % NET = RBFTRAIN(NET, OPTIONS, X, T) uses a two stage training
6 % algorithm to set the weights in the RBF model structure NET. Each row
7 % of X corresponds to one input vector and each row of T contains the
8 % corresponding target vector. The centres are determined by fitting a
9 % Gaussian mixture model with circular covariances using the EM
10 % algorithm through a call to RBFSETBF. (The mixture model is
11 % initialised using a small number of iterations of the K-means
12 % algorithm.) If the activation functions are Gaussians, then the basis
13 % function widths are then set to the maximum inter-centre squared
14 % distance.
15 %
16 % For linear outputs, the hidden to output weights that give rise to
17 % the least squares solution can then be determined using the pseudo-
18 % inverse. For neuroscale outputs, the hidden to output weights are
19 % determined using the iterative shadow targets algorithm. Although
20 % this two stage procedure may not give solutions with as low an error
21 % as using general purpose non-linear optimisers, it is much faster.
22 %
23 % The options vector may have two rows: if this is the case, then the
24 % second row is passed to RBFSETBF, which allows the user to specify a
25 % different number iterations for RBF and GMM training. The optional
26 % parameters to RBFTRAIN have the following interpretations.
27 %
28 % OPTIONS(1) is set to 1 to display error values during EM training.
29 %
30 % OPTIONS(2) is a measure of the precision required for the value of
31 % the weights W at the solution.
32 %
33 % OPTIONS(3) is a measure of the precision required of the objective
34 % function at the solution. Both this and the previous condition must
35 % be satisfied for termination.
36 %
37 % OPTIONS(5) is set to 1 if the basis functions parameters should
38 % remain unchanged; default 0.
39 %
40 % OPTIONS(6) is set to 1 if the output layer weights should be should
41 % set using PCA. This is only relevant for Neuroscale outputs; default
42 % 0.
43 %
44 % OPTIONS(14) is the maximum number of iterations for the shadow
45 % targets algorithm; default 100.
46 %
47 % See also
48 % RBF, RBFERR, RBFFWD, RBFGRAD, RBFPAK, RBFUNPAK, RBFSETBF
49 %
50
51 % Copyright (c) Ian T Nabney (1996-2001)
52
53 % Check arguments for consistency
54 switch net.outfn
55 case 'linear'
56 errstring = consist(net, 'rbf', x, t);
57 case 'neuroscale'
58 errstring = consist(net, 'rbf', x);
59 otherwise
60 error(['Unknown output function ', net.outfn]);
61 end
62 if ~isempty(errstring)
63 error(errstring);
64 end
65
66 % Allow options to have two rows: if this is the case, then the second row
67 % is passed to rbfsetbf
68 if size(options, 1) == 2
69 setbfoptions = options(2, :);
70 options = options(1, :);
71 else
72 setbfoptions = options;
73 end
74
75 if(~options(14))
76 options(14) = 100;
77 end
78 % Do we need to test for termination?
79 test = (options(2) | options(3));
80
81 % Set up the basis function parameters to model the input data density
82 % unless options(5) is set.
83 if ~(logical(options(5)))
84 net = rbfsetbf(net, setbfoptions, x);
85 end
86
87 % Compute the design (or activations) matrix
88 [y, act] = rbffwd(net, x);
89 ndata = size(x, 1);
90
91 if strcmp(net.outfn, 'neuroscale') & options(6)
92 % Initialise output layer weights by projecting data with PCA
93 mu = mean(x);
94 [pcvals, pcvecs] = pca(x, net.nout);
95 xproj = (x - ones(ndata, 1)*mu)*pcvecs;
96 % Now use projected data as targets to compute output layer weights
97 temp = pinv([act ones(ndata, 1)]) * xproj;
98 net.w2 = temp(1:net.nhidden, :);
99 net.b2 = temp(net.nhidden+1, :);
100 % Propagate again to compute revised outputs
101 [y, act] = rbffwd(net, x);
102 end
103
104 switch net.outfn
105 case 'linear'
106 % Sum of squares error function in regression model
107 % Solve for the weights and biases using pseudo-inverse from activations
108 Phi = [act ones(ndata, 1)];
109 if ~isfield(net, 'alpha')
110 % Solve for the weights and biases using left matrix divide
111 temp = pinv(Phi)*t;
112 elseif size(net.alpha == [1 1])
113 % Use normal form equation
114 hessian = Phi'*Phi + net.alpha*eye(net.nhidden+1);
115 temp = pinv(hessian)*(Phi'*t);
116 else
117 error('Only scalar alpha allowed');
118 end
119 net.w2 = temp(1:net.nhidden, :);
120 net.b2 = temp(net.nhidden+1, :);
121
122 case 'neuroscale'
123 % Use the shadow targets training algorithm
124 if nargin < 4
125 % If optional input distances not passed in, then use
126 % Euclidean distance
127 x_dist = sqrt(dist2(x, x));
128 else
129 x_dist = t;
130 end
131 Phi = [act, ones(ndata, 1)];
132 % Compute the pseudo-inverse of Phi
133 PhiDag = pinv(Phi);
134 % Compute y_dist, distances between image points
135 y_dist = sqrt(dist2(y, y));
136
137 % Save old weights so that we can check the termination criterion
138 wold = netpak(net);
139 % Compute initial error (stress) value
140 errold = 0.5*(sum(sum((x_dist - y_dist).^2)));
141
142 % Initial value for eta
143 eta = 0.1;
144 k_up = 1.2;
145 k_down = 0.1;
146 success = 1; % Force initial gradient calculation
147
148 for j = 1:options(14)
149 if success
150 % Compute the negative error gradient with respect to network outputs
151 D = (x_dist - y_dist)./(y_dist+(y_dist==0));
152 temp = y';
153 neg_gradient = -2.*sum(kron(D, ones(1, net.nout)) .* ...
154 (repmat(y, 1, ndata) - repmat((temp(:))', ndata, 1)), 1);
155 neg_gradient = (reshape(neg_gradient, net.nout, ndata))';
156 end
157 % Compute the shadow targets
158 t = y + eta*neg_gradient;
159 % Solve for the weights and biases
160 temp = PhiDag * t;
161 net.w2 = temp(1:net.nhidden, :);
162 net.b2 = temp(net.nhidden+1, :);
163
164 % Do housekeeping and test for convergence
165 ynew = rbffwd(net, x);
166 y_distnew = sqrt(dist2(ynew, ynew));
167 err = 0.5.*(sum(sum((x_dist-y_distnew).^2)));
168 if err > errold
169 success = 0;
170 % Restore previous weights
171 net = netunpak(net, wold);
172 err = errold;
173 eta = eta * k_down;
174 else
175 success = 1;
176 eta = eta * k_up;
177 errold = err;
178 y = ynew;
179 y_dist = y_distnew;
180 if test & j > 1
181 w = netpak(net);
182 if (max(abs(w - wold)) < options(2) & abs(err-errold) < options(3))
183 options(8) = err;
184 return;
185 end
186 end
187 wold = netpak(net);
188 end
189 if options(1)
190 fprintf(1, 'Cycle %4d Error %11.6f\n', j, err)
191 end
192 if nargout >= 3
193 errlog(j) = err;
194 end
195 end
196 options(8) = errold;
197 if (options(1) >= 0)
198 disp('Warning: Maximum number of iterations has been exceeded');
199 end
200 otherwise
201 error(['Unknown output function ', net.outfn]);
202
203 end