Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/netlab3.3/quasinew.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function [x, options, flog, pointlog] = quasinew(f, x, options, gradf, ... | |
2 varargin) | |
3 %QUASINEW Quasi-Newton optimization. | |
4 % | |
5 % Description | |
6 % [X, OPTIONS, FLOG, POINTLOG] = QUASINEW(F, X, OPTIONS, GRADF) uses a | |
7 % quasi-Newton algorithm to find a local minimum of the function F(X) | |
8 % whose gradient is given by GRADF(X). Here X is a row vector and F | |
9 % returns a scalar value. The point at which F has a local minimum is | |
10 % returned as X. The function value at that point is returned in | |
11 % OPTIONS(8). A log of the function values after each cycle is | |
12 % (optionally) returned in FLOG, and a log of the points visited is | |
13 % (optionally) returned in POINTLOG. | |
14 % | |
15 % QUASINEW(F, X, OPTIONS, GRADF, P1, P2, ...) allows additional | |
16 % arguments to be passed to F() and GRADF(). | |
17 % | |
18 % The optional parameters have the following interpretations. | |
19 % | |
20 % OPTIONS(1) is set to 1 to display error values; also logs error | |
21 % values in the return argument ERRLOG, and the points visited in the | |
22 % return argument POINTSLOG. If OPTIONS(1) is set to 0, then only | |
23 % warning messages are displayed. If OPTIONS(1) is -1, then nothing is | |
24 % displayed. | |
25 % | |
26 % OPTIONS(2) is a measure of the absolute precision required for the | |
27 % value of X at the solution. If the absolute difference between the | |
28 % values of X between two successive steps is less than OPTIONS(2), | |
29 % then this condition is satisfied. | |
30 % | |
31 % OPTIONS(3) is a measure of the precision required of the objective | |
32 % function at the solution. If the absolute difference between the | |
33 % objective function values between two successive steps is less than | |
34 % OPTIONS(3), then this condition is satisfied. Both this and the | |
35 % previous condition must be satisfied for termination. | |
36 % | |
37 % OPTIONS(9) should be set to 1 to check the user defined gradient | |
38 % function. | |
39 % | |
40 % OPTIONS(10) returns the total number of function evaluations | |
41 % (including those in any line searches). | |
42 % | |
43 % OPTIONS(11) returns the total number of gradient evaluations. | |
44 % | |
45 % OPTIONS(14) is the maximum number of iterations; default 100. | |
46 % | |
47 % OPTIONS(15) is the precision in parameter space of the line search; | |
48 % default 1E-2. | |
49 % | |
50 % See also | |
51 % CONJGRAD, GRADDESC, LINEMIN, MINBRACK, SCG | |
52 % | |
53 | |
54 % Copyright (c) Ian T Nabney (1996-2001) | |
55 | |
56 % Set up the options. | |
57 if length(options) < 18 | |
58 error('Options vector too short') | |
59 end | |
60 | |
61 if(options(14)) | |
62 niters = options(14); | |
63 else | |
64 niters = 100; | |
65 end | |
66 | |
67 % Set up options for line search | |
68 line_options = foptions; | |
69 % Don't need a very precise line search | |
70 if options(15) > 0 | |
71 line_options(2) = options(15); | |
72 else | |
73 line_options(2) = 1e-2; % Default | |
74 end | |
75 % Minimal fractional change in f from Newton step: otherwise do a line search | |
76 min_frac_change = 1e-4; | |
77 | |
78 display = options(1); | |
79 | |
80 % Next two lines allow quasinew to work with expression strings | |
81 f = fcnchk(f, length(varargin)); | |
82 gradf = fcnchk(gradf, length(varargin)); | |
83 | |
84 % Check gradients | |
85 if (options(9)) | |
86 feval('gradchek', x, f, gradf, varargin{:}); | |
87 end | |
88 | |
89 nparams = length(x); | |
90 fnew = feval(f, x, varargin{:}); | |
91 options(10) = options(10) + 1; | |
92 gradnew = feval(gradf, x, varargin{:}); | |
93 options(11) = options(11) + 1; | |
94 p = -gradnew; % Search direction | |
95 hessinv = eye(nparams); % Initialise inverse Hessian to be identity matrix | |
96 j = 1; | |
97 if nargout >= 3 | |
98 flog(j, :) = fnew; | |
99 if nargout == 4 | |
100 pointlog(j, :) = x; | |
101 end | |
102 end | |
103 | |
104 while (j <= niters) | |
105 | |
106 xold = x; | |
107 fold = fnew; | |
108 gradold = gradnew; | |
109 | |
110 x = xold + p; | |
111 fnew = feval(f, x, varargin{:}); | |
112 options(10) = options(10) + 1; | |
113 | |
114 % This shouldn't occur, but rest of code depends on sd being downhill | |
115 if (gradnew*p' >= 0) | |
116 p = -p; | |
117 if options(1) >= 0 | |
118 warning('search direction uphill in quasinew'); | |
119 end | |
120 end | |
121 | |
122 % Does the Newton step reduce the function value sufficiently? | |
123 if (fnew >= fold + min_frac_change * (gradnew*p')) | |
124 % No it doesn't | |
125 % Minimize along current search direction: must be less than Newton step | |
126 [lmin, line_options] = feval('linemin', f, xold, p, fold, ... | |
127 line_options, varargin{:}); | |
128 options(10) = options(10) + line_options(10); | |
129 options(11) = options(11) + line_options(11); | |
130 % Correct x and fnew to be the actual search point we have found | |
131 x = xold + lmin * p; | |
132 p = x - xold; | |
133 fnew = line_options(8); | |
134 end | |
135 | |
136 % Check for termination | |
137 if (max(abs(x - xold)) < options(2) & max(abs(fnew - fold)) < options(3)) | |
138 options(8) = fnew; | |
139 return; | |
140 end | |
141 gradnew = feval(gradf, x, varargin{:}); | |
142 options(11) = options(11) + 1; | |
143 v = gradnew - gradold; | |
144 vdotp = v*p'; | |
145 | |
146 % Skip update to inverse Hessian if fac not sufficiently positive | |
147 if (vdotp*vdotp > eps*sum(v.^2)*sum(p.^2)) | |
148 Gv = (hessinv*v')'; | |
149 vGv = sum(v.*Gv); | |
150 u = p./vdotp - Gv./vGv; | |
151 % Use BFGS update rule | |
152 hessinv = hessinv + (p'*p)/vdotp - (Gv'*Gv)/vGv + vGv*(u'*u); | |
153 end | |
154 | |
155 p = -(hessinv * gradnew')'; | |
156 | |
157 if (display > 0) | |
158 fprintf(1, 'Cycle %4d Function %11.6f\n', j, fnew); | |
159 end | |
160 | |
161 j = j + 1; | |
162 if nargout >= 3 | |
163 flog(j, :) = fnew; | |
164 if nargout == 4 | |
165 pointlog(j, :) = x; | |
166 end | |
167 end | |
168 end | |
169 | |
170 % If we get here, then we haven't terminated in the given number of | |
171 % iterations. | |
172 | |
173 options(8) = fold; | |
174 if (options(1) >= 0) | |
175 disp(maxitmess); | |
176 end |