comparison toolboxes/FullBNT-1.0.7/netlab3.3/netinit.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function net = netinit(net, prior)
2 %NETINIT Initialise the weights in a network.
3 %
4 % Description
5 %
6 % NET = NETINIT(NET, PRIOR) takes a network data structure NET and sets
7 % the weights and biases by sampling from a Gaussian distribution. If
8 % PRIOR is a scalar, then all of the parameters (weights and biases)
9 % are sampled from a single isotropic Gaussian with inverse variance
10 % equal to PRIOR. If PRIOR is a data structure of the kind generated by
11 % MLPPRIOR, then the parameters are sampled from multiple Gaussians
12 % according to their groupings (defined by the INDEX field) with
13 % corresponding variances (defined by the ALPHA field).
14 %
15 % See also
16 % MLPPRIOR, NETUNPAK, RBFPRIOR
17 %
18
19 % Copyright (c) Ian T Nabney (1996-2001)
20
21 if isstruct(prior)
22 if (isfield(net, 'mask'))
23 if find(sum(prior.index, 2)) ~= find(net.mask)
24 error('Index does not match mask');
25 end
26 sig = sqrt(prior.index*prior.alpha);
27 % Weights corresponding to zeros in mask will not be used anyway
28 % Set their priors to one to avoid division by zero
29 sig = sig + (sig == 0);
30 sig = 1./sqrt(sig);
31 else
32 sig = 1./sqrt(prior.index*prior.alpha);
33 end
34 w = sig'.*randn(1, net.nwts);
35 elseif size(prior) == [1 1]
36 w = randn(1, net.nwts).*sqrt(1/prior);
37 else
38 error('prior must be a scalar or a structure');
39 end
40
41 if (isfield(net, 'mask'))
42 w = w(logical(net.mask));
43 end
44 net = netunpak(net, w);
45