comparison toolboxes/FullBNT-1.0.7/netlab3.3/mlpprior.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function prior = mlpprior(nin, nhidden, nout, aw1, ab1, aw2, ab2)
2 %MLPPRIOR Create Gaussian prior for mlp.
3 %
4 % Description
5 % PRIOR = MLPPRIOR(NIN, NHIDDEN, NOUT, AW1, AB1, AW2, AB2) generates a
6 % data structure PRIOR, with fields PRIOR.ALPHA and PRIOR.INDEX, which
7 % specifies a Gaussian prior distribution for the network weights in a
8 % two-layer feedforward network. Two different cases are possible. In
9 % the first case, AW1, AB1, AW2 and AB2 are all scalars and represent
10 % the regularization coefficients for four groups of parameters in the
11 % network corresponding to first-layer weights, first-layer biases,
12 % second-layer weights, and second-layer biases respectively. Then
13 % PRIOR.ALPHA represents a column vector of length 4 containing the
14 % parameters, and PRIOR.INDEX is a matrix specifying which weights
15 % belong in each group. Each column has one element for each weight in
16 % the matrix, using the standard ordering as defined in MLPPAK, and
17 % each element is 1 or 0 according to whether the weight is a member of
18 % the corresponding group or not. In the second case the parameter AW1
19 % is a vector of length equal to the number of inputs in the network,
20 % and the corresponding matrix PRIOR.INDEX now partitions the first-
21 % layer weights into groups corresponding to the weights fanning out of
22 % each input unit. This prior is appropriate for the technique of
23 % automatic relevance determination.
24 %
25 % See also
26 % MLP, MLPERR, MLPGRAD, EVIDENCE
27 %
28
29 % Copyright (c) Ian T Nabney (1996-2001)
30
31 nextra = nhidden + (nhidden + 1)*nout;
32 nwts = nin*nhidden + nextra;
33
34 if size(aw1) == [1,1]
35
36 indx = [ones(1, nin*nhidden), zeros(1, nextra)]';
37
38 elseif size(aw1) == [1, nin]
39
40 indx = kron(ones(nhidden, 1), eye(nin));
41 indx = [indx; zeros(nextra, nin)];
42
43 else
44
45 error('Parameter aw1 of invalid dimensions');
46
47 end
48
49 extra = zeros(nwts, 3);
50
51 mark1 = nin*nhidden;
52 mark2 = mark1 + nhidden;
53 extra(mark1 + 1:mark2, 1) = ones(nhidden,1);
54 mark3 = mark2 + nhidden*nout;
55 extra(mark2 + 1:mark3, 2) = ones(nhidden*nout,1);
56 mark4 = mark3 + nout;
57 extra(mark3 + 1:mark4, 3) = ones(nout,1);
58
59 indx = [indx, extra];
60
61 prior.index = indx;
62 prior.alpha = [aw1, ab1, aw2, ab2]';