comparison toolboxes/FullBNT-1.0.7/netlab3.3/hbayes.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function [h, hdata] = hbayes(net, hdata)
2 %HBAYES Evaluate Hessian of Bayesian error function for network.
3 %
4 % Description
5 % H = HBAYES(NET, HDATA) takes a network data structure NET together
6 % the data contribution to the Hessian for a set of inputs and targets.
7 % It returns the regularised Hessian using any zero mean Gaussian
8 % priors on the weights defined in NET. In addition, if a MASK is
9 % defined in NET, then the entries in H that correspond to weights with
10 % a 0 in the mask are removed.
11 %
12 % [H, HDATA] = HBAYES(NET, HDATA) additionally returns the data
13 % component of the Hessian.
14 %
15 % See also
16 % GBAYES, GLMHESS, MLPHESS, RBFHESS
17 %
18
19 % Copyright (c) Ian T Nabney (1996-2001)
20
21 if (isfield(net, 'mask'))
22 % Extract relevant entries in Hessian
23 nmask_rows = size(find(net.mask), 1);
24 hdata = reshape(hdata(logical(net.mask*(net.mask'))), ...
25 nmask_rows, nmask_rows);
26 nwts = nmask_rows;
27 else
28 nwts = net.nwts;
29 end
30 if isfield(net, 'beta')
31 h = net.beta*hdata;
32 else
33 h = hdata;
34 end
35
36 if isfield(net, 'alpha')
37 if size(net.alpha) == [1 1]
38 h = h + net.alpha*eye(nwts);
39 else
40 if isfield(net, 'mask')
41 nindx_cols = size(net.index, 2);
42 index = reshape(net.index(logical(repmat(net.mask, ...
43 1, nindx_cols))), nmask_rows, nindx_cols);
44 else
45 index = net.index;
46 end
47 h = h + diag(index*net.alpha);
48 end
49 end