Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/netlab3.3/gpfwd.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function [y, sigsq] = gpfwd(net, x, cninv) | |
2 %GPFWD Forward propagation through Gaussian Process. | |
3 % | |
4 % Description | |
5 % Y = GPFWD(NET, X) takes a Gaussian Process data structure NET | |
6 % together with a matrix X of input vectors, and forward propagates | |
7 % the inputs through the model to generate a matrix Y of output | |
8 % vectors. Each row of X corresponds to one input vector and each row | |
9 % of Y corresponds to one output vector. This assumes that the | |
10 % training data (both inputs and targets) has been stored in NET by a | |
11 % call to GPINIT; these are needed to compute the training data | |
12 % covariance matrix. | |
13 % | |
14 % [Y, SIGSQ] = GPFWD(NET, X) also generates a column vector SIGSQ of | |
15 % conditional variances (or squared error bars) where each value | |
16 % corresponds to a pattern. | |
17 % | |
18 % [Y, SIGSQ] = GPFWD(NET, X, CNINV) uses the pre-computed inverse | |
19 % covariance matrix CNINV in the forward propagation. This increases | |
20 % efficiency if several calls to GPFWD are made. | |
21 % | |
22 % See also | |
23 % GP, DEMGP, GPINIT | |
24 % | |
25 | |
26 % Copyright (c) Ian T Nabney (1996-2001) | |
27 | |
28 errstring = consist(net, 'gp', x); | |
29 if ~isempty(errstring); | |
30 error(errstring); | |
31 end | |
32 | |
33 if ~(isfield(net, 'tr_in') & isfield(net, 'tr_targets')) | |
34 error('Require training inputs and targets'); | |
35 end | |
36 | |
37 if nargin == 2 | |
38 % Inverse covariance matrix not supplied. | |
39 cninv = inv(gpcovar(net, net.tr_in)); | |
40 end | |
41 ktest = gpcovarp(net, x, net.tr_in); | |
42 | |
43 % Predict mean | |
44 y = ktest*cninv*net.tr_targets; | |
45 | |
46 if nargout >= 2 | |
47 % Predict error bar | |
48 ndata = size(x, 1); | |
49 sigsq = (ones(ndata, 1) * gpcovarp(net, x(1,:), x(1,:))) ... | |
50 - sum((ktest*cninv).*ktest, 2); | |
51 end |