Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/netlab3.3/gperr.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function [e, edata, eprior] = gperr(net, x, t) | |
2 %GPERR Evaluate error function for Gaussian Process. | |
3 % | |
4 % Description | |
5 % E = GPERR(NET, X, T) takes a Gaussian Process data structure NET | |
6 % together with a matrix X of input vectors and a matrix T of target | |
7 % vectors, and evaluates the error function E. Each row of X | |
8 % corresponds to one input vector and each row of T corresponds to one | |
9 % target vector. | |
10 % | |
11 % [E, EDATA, EPRIOR] = GPERR(NET, X, T) additionally returns the data | |
12 % and hyperprior components of the error, assuming a Gaussian prior on | |
13 % the weights with mean and variance parameters PRMEAN and PRVARIANCE | |
14 % taken from the network data structure NET. | |
15 % | |
16 % See also | |
17 % GP, GPCOVAR, GPFWD, GPGRAD | |
18 % | |
19 | |
20 % Copyright (c) Ian T Nabney (1996-2001) | |
21 | |
22 errstring = consist(net, 'gp', x, t); | |
23 if ~isempty(errstring); | |
24 error(errstring); | |
25 end | |
26 | |
27 cn = gpcovar(net, x); | |
28 | |
29 edata = 0.5*(sum(log(eig(cn, 'nobalance'))) + t'*inv(cn)*t); | |
30 | |
31 % Evaluate the hyperprior contribution to the error. | |
32 % The hyperprior is Gaussian with mean pr_mean and variance | |
33 % pr_variance | |
34 if isfield(net, 'pr_mean') | |
35 w = gppak(net); | |
36 m = repmat(net.pr_mean, size(w)); | |
37 if size(net.pr_mean) == [1 1] | |
38 eprior = 0.5*((w-m)*(w-m)'); | |
39 e2 = eprior/net.pr_var; | |
40 else | |
41 wpr = repmat(w, size(net.pr_mean, 1), 1)'; | |
42 eprior = 0.5*(((wpr - m').^2).*net.index); | |
43 e2 = (sum(eprior, 1))*(1./net.pr_var); | |
44 end | |
45 else | |
46 e2 = 0; | |
47 eprior = 0; | |
48 end | |
49 | |
50 e = edata + e2; | |
51 |