Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/netlab3.3/gpcovarf.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function covf = gpcovarf(net, x1, x2) | |
2 %GPCOVARF Calculate the covariance function for a Gaussian Process. | |
3 % | |
4 % Description | |
5 % | |
6 % COVF = GPCOVARF(NET, X1, X2) takes a Gaussian Process data structure | |
7 % NET together with two matrices X1 and X2 of input vectors, and | |
8 % computes the matrix of the covariance function values COVF. | |
9 % | |
10 % See also | |
11 % GP, GPCOVAR, GPCOVARP, GPERR, GPGRAD | |
12 % | |
13 | |
14 % Copyright (c) Ian T Nabney (1996-2001) | |
15 | |
16 errstring = consist(net, 'gp', x1); | |
17 if ~isempty(errstring); | |
18 error(errstring); | |
19 end | |
20 | |
21 if size(x1, 2) ~= size(x2, 2) | |
22 error('Number of variables in x1 and x2 must be the same'); | |
23 end | |
24 | |
25 n1 = size(x1, 1); | |
26 n2 = size(x2, 1); | |
27 beta = diag(exp(net.inweights)); | |
28 | |
29 % Compute the weighted squared distances between x1 and x2 | |
30 z = (x1.*x1)*beta*ones(net.nin, n2) - 2*x1*beta*x2' ... | |
31 + ones(n1, net.nin)*beta*(x2.*x2)'; | |
32 | |
33 switch net.covar_fn | |
34 | |
35 case 'sqexp' % Squared exponential | |
36 covf = exp(net.fpar(1) - 0.5*z); | |
37 | |
38 case 'ratquad' % Rational quadratic | |
39 nu = exp(net.fpar(2)); | |
40 covf = exp(net.fpar(1))*((ones(size(z)) + z).^(-nu)); | |
41 | |
42 otherwise | |
43 error(['Unknown covariance function ', net.covar_fn]); | |
44 end |