comparison toolboxes/FullBNT-1.0.7/netlab3.3/demknn1.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 %DEMKNN1 Demonstrate nearest neighbour classifier.
2 %
3 % Description
4 % The problem consists of data in a two-dimensional space. The data is
5 % drawn from three spherical Gaussian distributions with priors 0.3,
6 % 0.5 and 0.2; centres (2, 3.5), (0, 0) and (0,2); and standard
7 % deviations 0.2, 0.5 and 1.0. The first figure contains a scatter plot
8 % of the data. The data is the same as in DEMGMM1.
9 %
10 % The second figure shows the data labelled with the corresponding
11 % class given by the classifier.
12 %
13 % See also
14 % DEM2DDAT, DEMGMM1, KNN
15 %
16
17 % Copyright (c) Ian T Nabney (1996-2001)
18
19 clc
20 disp('This program demonstrates the use of the K nearest neighbour algorithm.')
21 disp(' ')
22 disp('Press any key to continue.')
23 pause
24 % Generate the test data
25 ndata = 250;
26 randn('state', 42);
27 rand('state', 42);
28
29 [data, c] = dem2ddat(ndata);
30
31 % Randomise data order
32 data = data(randperm(ndata),:);
33
34 clc
35 disp('We generate the data in two-dimensional space from a mixture of')
36 disp('three spherical Gaussians. The centres are shown as black crosses')
37 disp('in the plot.')
38 disp(' ')
39 disp('Press any key to continue.')
40 pause
41 fh1 = figure;
42 plot(data(:, 1), data(:, 2), 'o')
43 set(gca, 'Box', 'on')
44 hold on
45 title('Data')
46 hp1 = plot(c(:, 1), c(:,2), 'k+')
47 % Increase size of crosses
48 set(hp1, 'MarkerSize', 8);
49 set(hp1, 'LineWidth', 2);
50 hold off
51
52 clc
53 disp('We next use the centres as training examplars for the K nearest')
54 disp('neighbour algorithm.')
55 disp(' ')
56 disp('Press any key to continue.')
57 pause
58
59 % Use centres as training data
60 train_labels = [1, 0, 0; 0, 1, 0; 0, 0, 1];
61
62 % Label the test data up to kmax neighbours
63 kmax = 1;
64 net = knn(2, 3, kmax, c, train_labels);
65 [y, l] = knnfwd(net, data);
66
67 clc
68 disp('We now plot each data point coloured according to its classification.')
69 disp(' ')
70 disp('Press any key to continue.')
71 pause
72 % Plot the result
73 fh2 = figure;
74 colors = ['b.'; 'r.'; 'g.'];
75 for i = 1:3
76 thisX = data(l == i,1);
77 thisY = data(l == i,2);
78 hp(i) = plot(thisX, thisY, colors(i,:));
79 set(hp(i), 'MarkerSize', 12);
80 if i == 1
81 hold on
82 end
83 end
84 set(gca, 'Box', 'on');
85 legend('Class 1', 'Class 2', 'Class 3', 2)
86 hold on
87 labels = ['1', '2', '3'];
88 hp2 = plot(c(:, 1), c(:,2), 'k+');
89 % Increase size of crosses
90 set(hp2, 'MarkerSize', 8);
91 set(hp2, 'LineWidth', 2);
92
93 test_labels = labels(l(:,1));
94
95 title('Training data and data labels')
96 hold off
97
98 disp('The demonstration is now complete: press any key to exit.')
99 pause
100 close(fh1);
101 close(fh2);
102 clear all;
103