Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/netlab3.3/demglm1.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 %DEMGLM1 Demonstrate simple classification using a generalized linear model. | |
2 % | |
3 % Description | |
4 % The problem consists of a two dimensional input matrix DATA and a | |
5 % vector of classifications T. The data is generated from two | |
6 % Gaussian clusters, and a generalized linear model with logistic | |
7 % output is trained using iterative reweighted least squares. A plot of | |
8 % the data together with the 0.1, 0.5 and 0.9 contour lines of the | |
9 % conditional probability is generated. | |
10 % | |
11 % See also | |
12 % DEMGLM2, GLM, GLMTRAIN | |
13 % | |
14 | |
15 % Copyright (c) Ian T Nabney (1996-2001) | |
16 | |
17 | |
18 % Generate data from two classes in 2d | |
19 input_dim = 2; | |
20 | |
21 % Fix seeds for reproducible results | |
22 randn('state', 42); | |
23 rand('state', 42); | |
24 | |
25 ndata = 100; | |
26 % Generate mixture of two Gaussians in two dimensional space | |
27 mix = gmm(2, 2, 'spherical'); | |
28 mix.priors = [0.4 0.6]; % Cluster priors | |
29 mix.centres = [2.0, 2.0; 0.0, 0.0]; % Cluster centres | |
30 mix.covars = [0.5, 1.0]; | |
31 | |
32 [data, label] = gmmsamp(mix, ndata); | |
33 targets = label - ones(ndata, 1); | |
34 | |
35 % Plot the result | |
36 | |
37 clc | |
38 disp('This demonstration illustrates the use of a generalized linear model') | |
39 disp('to classify data from two classes in a two-dimensional space. We') | |
40 disp('begin by generating and plotting the data.') | |
41 disp(' ') | |
42 disp('Press any key to continue.') | |
43 pause | |
44 | |
45 fh1 = figure; | |
46 plot(data(label==1,1), data(label==1,2), 'bo'); | |
47 hold on | |
48 axis([-4 5 -4 5]) | |
49 set(gca, 'box', 'on') | |
50 plot(data(label==2,1), data(label==2,2), 'rx') | |
51 title('Data') | |
52 | |
53 clc | |
54 disp('Now we fit a model consisting of a logistic sigmoid function of') | |
55 disp('a linear combination of the input variables.') | |
56 disp(' ') | |
57 disp('The model is trained using the IRLS algorithm for 5 iterations') | |
58 disp(' ') | |
59 disp('Press any key to continue.') | |
60 pause | |
61 | |
62 net = glm(input_dim, 1, 'logistic'); | |
63 options = foptions; | |
64 options(1) = 1; | |
65 options(14) = 5; | |
66 net = glmtrain(net, options, data, targets); | |
67 | |
68 disp(' ') | |
69 disp('We now plot some density contours given by this model.') | |
70 disp('The contour labelled 0.5 is the decision boundary.') | |
71 disp(' ') | |
72 disp('Press any key to continue.') | |
73 pause | |
74 x = -4.0:0.2:5.0; | |
75 y = -4.0:0.2:5.0; | |
76 [X, Y] = meshgrid(x,y); | |
77 X = X(:); | |
78 Y = Y(:); | |
79 grid = [X Y]; | |
80 Z = glmfwd(net, grid); | |
81 Z = reshape(Z, length(x), length(y)); | |
82 v = [0.1 0.5 0.9]; | |
83 [c, h] = contour(x, y, Z, v); | |
84 title('Generalized Linear Model') | |
85 set(h, 'linewidth', 3) | |
86 clabel(c, h); | |
87 | |
88 clc | |
89 disp('Note that the contours of constant density are straight lines.') | |
90 disp(' ') | |
91 disp('Press any key to end.') | |
92 pause | |
93 close(fh1); | |
94 clear all; | |
95 |