Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/nethelp3.3/mlphess.htm @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 <html> | |
2 <head> | |
3 <title> | |
4 Netlab Reference Manual mlphess | |
5 </title> | |
6 </head> | |
7 <body> | |
8 <H1> mlphess | |
9 </H1> | |
10 <h2> | |
11 Purpose | |
12 </h2> | |
13 Evaluate the Hessian matrix for a multi-layer perceptron network. | |
14 | |
15 <p><h2> | |
16 Synopsis | |
17 </h2> | |
18 <PRE> | |
19 h = mlphess(net, x, t) | |
20 [h, hdata] = mlphess(net, x, t) | |
21 h = mlphess(net, x, t, hdata) | |
22 </PRE> | |
23 | |
24 | |
25 <p><h2> | |
26 Description | |
27 </h2> | |
28 <CODE>h = mlphess(net, x, t)</CODE> takes an MLP network data structure <CODE>net</CODE>, | |
29 a matrix <CODE>x</CODE> of input values, and a matrix <CODE>t</CODE> of target | |
30 values and returns the full Hessian matrix <CODE>h</CODE> corresponding to | |
31 the second derivatives of the negative log posterior distribution, | |
32 evaluated for the current weight and bias values as defined by | |
33 <CODE>net</CODE>. | |
34 | |
35 <p><CODE>[h, hdata] = mlphess(net, x, t)</CODE> returns both the Hessian matrix | |
36 <CODE>h</CODE> and the contribution <CODE>hdata</CODE> arising from the data dependent | |
37 term in the Hessian. | |
38 | |
39 <p><CODE>h = mlphess(net, x, t, hdata)</CODE> takes a network data structure | |
40 <CODE>net</CODE>, a matrix <CODE>x</CODE> of input values, and a matrix <CODE>t</CODE> of | |
41 target values, together with the contribution <CODE>hdata</CODE> arising from | |
42 the data dependent term in the Hessian, and returns the full Hessian | |
43 matrix <CODE>h</CODE> corresponding to the second derivatives of the negative | |
44 log posterior distribution. This version saves computation time if | |
45 <CODE>hdata</CODE> has already been evaluated for the current weight and bias | |
46 values. | |
47 | |
48 <p><h2> | |
49 Example | |
50 </h2> | |
51 For the standard regression framework with a Gaussian conditional | |
52 distribution of target values given input values, and a simple | |
53 Gaussian prior over weights, the Hessian takes the form | |
54 <PRE> | |
55 | |
56 h = beta*hd + alpha*I | |
57 </PRE> | |
58 | |
59 where the contribution <CODE>hd</CODE> is evaluated by calls to <CODE>mlphdotv</CODE> and | |
60 <CODE>h</CODE> is the full Hessian. | |
61 | |
62 <p><h2> | |
63 See Also | |
64 </h2> | |
65 <CODE><a href="mlp.htm">mlp</a></CODE>, <CODE><a href="hesschek.htm">hesschek</a></CODE>, <CODE><a href="mlphdotv.htm">mlphdotv</a></CODE>, <CODE><a href="evidence.htm">evidence</a></CODE><hr> | |
66 <b>Pages:</b> | |
67 <a href="index.htm">Index</a> | |
68 <hr> | |
69 <p>Copyright (c) Ian T Nabney (1996-9) | |
70 | |
71 | |
72 </body> | |
73 </html> |