comparison toolboxes/FullBNT-1.0.7/nethelp3.3/mlp.htm @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 <html>
2 <head>
3 <title>
4 Netlab Reference Manual mlp
5 </title>
6 </head>
7 <body>
8 <H1> mlp
9 </H1>
10 <h2>
11 Purpose
12 </h2>
13 Create a 2-layer feedforward network.
14
15 <p><h2>
16 Synopsis
17 </h2>
18 <PRE>
19 net = mlp(nin, nhidden, nout, func)
20 net = mlp(nin, nhidden, nout, func, prior)
21 net = mlp(nin, nhidden, nout, func, prior, beta)
22 </PRE>
23
24
25 <p><h2>
26 Description
27 </h2>
28 <CODE>net = mlp(nin, nhidden, nout, func)</CODE> takes the number of inputs,
29 hidden units and output units for a 2-layer feed-forward network,
30 together with a string <CODE>func</CODE> which specifies the output unit
31 activation function, and returns a data structure <CODE>net</CODE>. The
32 weights are drawn from a zero mean, unit variance isotropic Gaussian,
33 with varianced scaled by the fan-in of the hidden or output units as
34 appropriate. This makes use of the Matlab function
35 <CODE>randn</CODE> and so the seed for the random weight initialization can be
36 set using <CODE>randn('state', s)</CODE> where <CODE>s</CODE> is the seed value.
37 The hidden units use the <CODE>tanh</CODE> activation function.
38
39 <p>The fields in <CODE>net</CODE> are
40 <PRE>
41
42 type = 'mlp'
43 nin = number of inputs
44 nhidden = number of hidden units
45 nout = number of outputs
46 nwts = total number of weights and biases
47 actfn = string describing the output unit activation function:
48 'linear'
49 'logistic
50 'softmax'
51 w1 = first-layer weight matrix
52 b1 = first-layer bias vector
53 w2 = second-layer weight matrix
54 b2 = second-layer bias vector
55 </PRE>
56
57 Here <CODE>w1</CODE> has dimensions <CODE>nin</CODE> times <CODE>nhidden</CODE>, <CODE>b1</CODE> has
58 dimensions <CODE>1</CODE> times <CODE>nhidden</CODE>, <CODE>w2</CODE> has
59 dimensions <CODE>nhidden</CODE> times <CODE>nout</CODE>, and <CODE>b2</CODE> has
60 dimensions <CODE>1</CODE> times <CODE>nout</CODE>.
61
62 <p><CODE>net = mlp(nin, nhidden, nout, func, prior)</CODE>, in which <CODE>prior</CODE> is
63 a scalar, allows the field <CODE>net.alpha</CODE> in the data structure
64 <CODE>net</CODE> to be set, corresponding to a zero-mean isotropic Gaussian
65 prior with inverse variance with value <CODE>prior</CODE>. Alternatively,
66 <CODE>prior</CODE> can consist of a data structure with fields <CODE>alpha</CODE>
67 and <CODE>index</CODE>, allowing individual Gaussian priors to be set over
68 groups of weights in the network. Here <CODE>alpha</CODE> is a column vector
69 in which each element corresponds to a separate group of weights,
70 which need not be mutually exclusive. The membership of the groups is
71 defined by the matrix <CODE>indx</CODE> in which the columns correspond to
72 the elements of <CODE>alpha</CODE>. Each column has one element for each
73 weight in the matrix, in the order defined by the function
74 <CODE>mlppak</CODE>, and each element is 1 or 0 according to whether the
75 weight is a member of the corresponding group or not. A utility
76 function <CODE>mlpprior</CODE> is provided to help in setting up the
77 <CODE>prior</CODE> data structure.
78
79 <p><CODE>net = mlp(nin, nhidden, nout, func, prior, beta)</CODE> also sets the
80 additional field <CODE>net.beta</CODE> in the data structure <CODE>net</CODE>, where
81 beta corresponds to the inverse noise variance.
82
83 <p><h2>
84 See Also
85 </h2>
86 <CODE><a href="mlpprior.htm">mlpprior</a></CODE>, <CODE><a href="mlppak.htm">mlppak</a></CODE>, <CODE><a href="mlpunpak.htm">mlpunpak</a></CODE>, <CODE><a href="mlpfwd.htm">mlpfwd</a></CODE>, <CODE><a href="mlperr.htm">mlperr</a></CODE>, <CODE><a href="mlpbkp.htm">mlpbkp</a></CODE>, <CODE><a href="mlpgrad.htm">mlpgrad</a></CODE><hr>
87 <b>Pages:</b>
88 <a href="index.htm">Index</a>
89 <hr>
90 <p>Copyright (c) Ian T Nabney (1996-9)
91
92
93 </body>
94 </html>