comparison toolboxes/FullBNT-1.0.7/nethelp3.3/gtminit.htm @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 <html>
2 <head>
3 <title>
4 Netlab Reference Manual gtminit
5 </title>
6 </head>
7 <body>
8 <H1> gtminit
9 </H1>
10 <h2>
11 Purpose
12 </h2>
13 Initialise the weights and latent sample in a GTM.
14
15 <p><h2>
16 Synopsis
17 </h2>
18 <PRE>
19 net = gtminit(net, options, data, samptype)
20 net = gtminit(net, options, data, samptype, lsampsize, rbfsampsize)
21 </PRE>
22
23
24 <p><h2>
25 Description
26 </h2>
27 <CODE>net = gtminit(net, options, data, samptype)</CODE> takes a GTM <CODE>net</CODE>
28 and generates a sample of latent data points and sets the centres (and
29 widths if appropriate) of
30 <CODE>net.rbfnet</CODE>.
31
32 <p>If the <CODE>samptype</CODE> is <CODE>'regular'</CODE>, then regular grids of latent
33 data points and RBF centres are created. The dimension of the latent data
34 space must be
35 1 or 2. For one-dimensional latent space, the <CODE>lsampsize</CODE> parameter
36 gives the number of latent points and the <CODE>rbfsampsize</CODE> parameter
37 gives the number of RBF centres. For a two-dimensional latent space,
38 these parameters must be vectors of length 2 with the number of points
39 in each of the x and y directions to create a rectangular grid. The
40 widths of the RBF basis functions are set by a call to <CODE>rbfsetfw</CODE>
41 passing <CODE>options(7)</CODE> as the scaling parameter.
42
43 <p>If the <CODE>samptype</CODE> is <CODE>'uniform'</CODE> or <CODE>'gaussian'</CODE> then the
44 latent data is found by sampling from a uniform or
45 Gaussian distribution correspondingly. The RBF basis function parameters
46 are set
47 by a call to <CODE>rbfsetbf</CODE> with the <CODE>data</CODE> parameter
48 as dataset and the <CODE>options</CODE> vector.
49
50 <p>Finally, the output layer weights of the RBF are initialised by
51 mapping the mean of the latent variable to the mean of the target variable,
52 and the L-dimensional latent variale variance to the variance of the
53 targets along the first L principal components.
54
55 <p><h2>
56 See Also
57 </h2>
58 <CODE><a href="gtm.htm">gtm</a></CODE>, <CODE><a href="gtmem.htm">gtmem</a></CODE>, <CODE><a href="pca.htm">pca</a></CODE>, <CODE><a href="rbfsetbf.htm">rbfsetbf</a></CODE>, <CODE><a href="rbfsetfw.htm">rbfsetfw</a></CODE><hr>
59 <b>Pages:</b>
60 <a href="index.htm">Index</a>
61 <hr>
62 <p>Copyright (c) Ian T Nabney (1996-9)
63
64
65 </body>
66 </html>