comparison toolboxes/FullBNT-1.0.7/nethelp3.3/glminit.htm @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 <html>
2 <head>
3 <title>
4 Netlab Reference Manual glminit
5 </title>
6 </head>
7 <body>
8 <H1> glminit
9 </H1>
10 <h2>
11 Purpose
12 </h2>
13 Initialise the weights in a generalized linear model.
14
15 <p><h2>
16 Synopsis
17 </h2>
18 <PRE>
19 net = glminit(net, prior)
20 </PRE>
21
22
23 <p><h2>
24 Description
25 </h2>
26
27 <p><CODE>net = glminit(net, prior)</CODE> takes a generalized linear model
28 <CODE>net</CODE> and sets the weights and biases by sampling from a Gaussian
29 distribution. If <CODE>prior</CODE> is a scalar, then all of the parameters
30 (weights and biases) are sampled from a single isotropic Gaussian with
31 inverse variance equal to <CODE>prior</CODE>. If <CODE>prior</CODE> is a data
32 structure similar to that in <CODE>mlpprior</CODE> but for a single layer of
33 weights, then the parameters
34 are sampled from multiple Gaussians according to their groupings
35 (defined by the <CODE>index</CODE> field) with corresponding variances
36 (defined by the <CODE>alpha</CODE> field).
37
38 <p><h2>
39 See Also
40 </h2>
41 <CODE><a href="glm.htm">glm</a></CODE>, <CODE><a href="glmpak.htm">glmpak</a></CODE>, <CODE><a href="glmunpak.htm">glmunpak</a></CODE>, <CODE><a href="mlpinit.htm">mlpinit</a></CODE>, <CODE><a href="mlpprior.htm">mlpprior</a></CODE><hr>
42 <b>Pages:</b>
43 <a href="index.htm">Index</a>
44 <hr>
45 <p>Copyright (c) Ian T Nabney (1996-9)
46
47
48 </body>
49 </html>