Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/nethelp3.3/glm.htm @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 <html> | |
2 <head> | |
3 <title> | |
4 Netlab Reference Manual glm | |
5 </title> | |
6 </head> | |
7 <body> | |
8 <H1> glm | |
9 </H1> | |
10 <h2> | |
11 Purpose | |
12 </h2> | |
13 Create a generalized linear model. | |
14 | |
15 <p><h2> | |
16 Synopsis | |
17 </h2> | |
18 <PRE> | |
19 net = glm(nin, nout, func) | |
20 net = glm(nin, nout, func, prior) | |
21 net = glm(nin, nout, func, prior, beta) | |
22 </PRE> | |
23 | |
24 | |
25 <p><h2> | |
26 Description | |
27 </h2> | |
28 | |
29 <p><CODE>net = glm(nin, nout, func)</CODE> takes the number of inputs | |
30 and outputs for a generalized linear model, together | |
31 with a string <CODE>func</CODE> which specifies the output unit activation function, | |
32 and returns a data structure <CODE>net</CODE>. The weights are drawn from a zero mean, | |
33 isotropic Gaussian, with variance scaled by the fan-in of the | |
34 output units. This makes use of the Matlab function | |
35 <CODE>randn</CODE> and so the seed for the random weight initialization can be | |
36 set using <CODE>randn('state', s)</CODE> where <CODE>s</CODE> is the seed value. The optional | |
37 argument <CODE>alpha</CODE> sets the inverse variance for the weight | |
38 initialization. | |
39 | |
40 <p>The fields in <CODE>net</CODE> are | |
41 <PRE> | |
42 type = 'glm' | |
43 nin = number of inputs | |
44 nout = number of outputs | |
45 nwts = total number of weights and biases | |
46 actfn = string describing the output unit activation function: | |
47 'linear' | |
48 'logistic' | |
49 'softmax' | |
50 w1 = first-layer weight matrix | |
51 b1 = first-layer bias vector | |
52 </PRE> | |
53 | |
54 | |
55 <p><CODE>net = glm(nin, nout, func, prior)</CODE>, in which <CODE>prior</CODE> is | |
56 a scalar, allows the field | |
57 <CODE>net.alpha</CODE> in the data structure <CODE>net</CODE> to be set, corresponding | |
58 to a zero-mean isotropic Gaussian prior with inverse variance with | |
59 value <CODE>prior</CODE>. Alternatively, <CODE>prior</CODE> can consist of a data | |
60 structure with fields <CODE>alpha</CODE> and <CODE>index</CODE>, allowing individual | |
61 Gaussian priors to be set over groups of weights in the network. Here | |
62 <CODE>alpha</CODE> is a column vector in which each element corresponds to a | |
63 separate group of weights, which need not be mutually exclusive. The | |
64 membership of the groups is defined by the matrix <CODE>index</CODE> in which | |
65 the columns correspond to the elements of <CODE>alpha</CODE>. Each column has | |
66 one element for each weight in the matrix, in the order defined by the | |
67 function <CODE>glmpak</CODE>, and each element is 1 or 0 according to whether | |
68 the weight is a member of the corresponding group or not. | |
69 | |
70 <p><CODE>net = glm(nin, nout, func, prior, beta)</CODE> also sets the | |
71 additional field <CODE>net.beta</CODE> in the data structure <CODE>net</CODE>, where | |
72 beta corresponds to the inverse noise variance. | |
73 | |
74 <p><h2> | |
75 See Also | |
76 </h2> | |
77 <CODE><a href="glmpak.htm">glmpak</a></CODE>, <CODE><a href="glmunpak.htm">glmunpak</a></CODE>, <CODE><a href="glmfwd.htm">glmfwd</a></CODE>, <CODE><a href="glmerr.htm">glmerr</a></CODE>, <CODE><a href="glmgrad.htm">glmgrad</a></CODE>, <CODE><a href="glmtrain.htm">glmtrain</a></CODE><hr> | |
78 <b>Pages:</b> | |
79 <a href="index.htm">Index</a> | |
80 <hr> | |
81 <p>Copyright (c) Ian T Nabney (1996-9) | |
82 | |
83 | |
84 </body> | |
85 </html> |