comparison toolboxes/FullBNT-1.0.7/nethelp3.3/gbayes.htm @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 <html>
2 <head>
3 <title>
4 Netlab Reference Manual gbayes
5 </title>
6 </head>
7 <body>
8 <H1> gbayes
9 </H1>
10 <h2>
11 Purpose
12 </h2>
13 Evaluate gradient of Bayesian error function for network.
14
15 <p><h2>
16 Synopsis
17 </h2>
18 <PRE>
19 g = gbayes(net, gdata)
20 [g, gdata, gprior] = gbayes(net, gdata)
21 </PRE>
22
23
24 <p><h2>
25 Description
26 </h2>
27 <CODE>g = gbayes(net, gdata)</CODE> takes a network data structure <CODE>net</CODE> together
28 the data contribution to the error gradient
29 for a set of inputs and targets.
30 It returns the regularised error gradient using any zero mean Gaussian priors
31 on the weights defined in
32 <CODE>net</CODE>. In addition, if a <CODE>mask</CODE> is defined in <CODE>net</CODE>, then
33 the entries in <CODE>g</CODE> that correspond to weights with a 0 in the
34 mask are removed.
35
36 <p><CODE>[g, gdata, gprior] = gbayes(net, gdata)</CODE> additionally returns the
37 data and prior components of the error.
38
39 <p><h2>
40 See Also
41 </h2>
42 <CODE><a href="errbayes.htm">errbayes</a></CODE>, <CODE><a href="glmgrad.htm">glmgrad</a></CODE>, <CODE><a href="mlpgrad.htm">mlpgrad</a></CODE>, <CODE><a href="rbfgrad.htm">rbfgrad</a></CODE><hr>
43 <b>Pages:</b>
44 <a href="index.htm">Index</a>
45 <hr>
46 <p>Copyright (c) Ian T Nabney (1996-9)
47
48
49 </body>
50 </html>