Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/nethelp3.3/demev3.htm @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 <html> | |
2 <head> | |
3 <title> | |
4 Netlab Reference Manual demev3 | |
5 </title> | |
6 </head> | |
7 <body> | |
8 <H1> demev3 | |
9 </H1> | |
10 <h2> | |
11 Purpose | |
12 </h2> | |
13 Demonstrate Bayesian regression for the RBF. | |
14 | |
15 <p><h2> | |
16 Synopsis | |
17 </h2> | |
18 <PRE> | |
19 demev3</PRE> | |
20 | |
21 | |
22 <p><h2> | |
23 Description | |
24 </h2> | |
25 The problem consists an input variable <CODE>x</CODE> which sampled from a | |
26 Gaussian distribution, and a target variable <CODE>t</CODE> generated by | |
27 computing <CODE>sin(2*pi*x)</CODE> and adding Gaussian noise. An RBF | |
28 network with linear outputs is trained by minimizing a sum-of-squares | |
29 error function with isotropic Gaussian regularizer, using the scaled | |
30 conjugate gradient optimizer. The hyperparameters <CODE>alpha</CODE> and | |
31 <CODE>beta</CODE> are re-estimated using the function <CODE>evidence</CODE>. A graph | |
32 is plotted of the original function, the training data, the trained | |
33 network function, and the error bars. | |
34 | |
35 <p><h2> | |
36 See Also | |
37 </h2> | |
38 <CODE><a href="demev1.htm">demev1</a></CODE>, <CODE><a href="evidence.htm">evidence</a></CODE>, <CODE><a href="rbf.htm">rbf</a></CODE>, <CODE><a href="scg.htm">scg</a></CODE>, <CODE><a href="netevfwd.htm">netevfwd</a></CODE><hr> | |
39 <b>Pages:</b> | |
40 <a href="index.htm">Index</a> | |
41 <hr> | |
42 <p>Copyright (c) Ian T Nabney (1996-9) | |
43 | |
44 | |
45 </body> | |
46 </html> |