comparison toolboxes/FullBNT-1.0.7/docs/dbn_hmm_demo.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 Example due to Wang Hee Lin" <engp1622@nus.edu.sg
2
3
4 intra = zeros(2);
5 intra(1,2) = 1;
6 inter = zeros(2);
7 inter(1,1) = 1;
8
9 Q = 2; % num hidden states
10 O = 2; % num observable symbols
11 ns = [Q O];%number of states
12 dnodes = 1:2;
13 %onodes = [1:2]; % only possible with jtree, not hmm
14 onodes = [2];
15 bnet = mk_dbn(intra, inter, ns, 'discrete', dnodes, 'observed', onodes);
16 for i=1:4
17 bnet.CPD{i} = tabular_CPD(bnet, i);
18 end
19
20 prior0 = normalise(rand(Q,1));
21 transmat0 = mk_stochastic(rand(Q,Q));
22 obsmat0 = mk_stochastic(rand(Q,O));
23
24 %engine = smoother_engine(hmm_2TBN_inf_engine(bnet));
25 engine = smoother_engine(jtree_2TBN_inf_engine(bnet));
26
27 ss = 2;%slice size(ss)
28 ncases = 10;%number of examples
29 T=10;
30 max_iter=2;%iterations for EM
31 cases = cell(1, ncases);
32 for i=1:ncases
33 ev = sample_dbn(bnet, T);
34 cases{i} = cell(ss,T);
35 cases{i}(onodes,:) = ev(onodes, :);
36 end
37 [bnet2, LLtrace] = learn_params_dbn_em(engine, cases, 'max_iter', 4);