comparison toolboxes/FullBNT-1.0.7/bnt/learning/learn_struct_K2.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function dag = learn_struct_K2(data, ns, order, varargin)
2 % LEARN_STRUCT_K2 Greedily learn the best structure compatible with a fixed node ordering
3 % best_dag = learn_struct_K2(data, node_sizes, order, ...)
4 %
5 % data(i,m) = value of node i in case m (can be a cell array).
6 % node_sizes(i) is the size of node i.
7 % order(i) is the i'th node in the topological ordering.
8 %
9 % The following optional arguments can be specified in the form of name/value pairs:
10 % [default value in brackets]
11 %
12 % max_fan_in - this the largest number of parents we allow per node [N]
13 % scoring_fn - 'bayesian' or 'bic' [ 'bayesian' ]
14 % Currently, only networks with all tabular nodes support Bayesian scoring.
15 % type - type{i} is the type of CPD to use for node i, where the type is a string
16 % of the form 'tabular', 'noisy_or', 'gaussian', etc. [ all cells contain 'tabular' ]
17 % params - params{i} contains optional arguments passed to the CPD constructor for node i,
18 % or [] if none. [ all cells contain {'prior', 1}, meaning use uniform Dirichlet priors ]
19 % discrete - the list of discrete nodes [ 1:N ]
20 % clamped - clamped(i,m) = 1 if node i is clamped in case m [ zeros(N, ncases) ]
21 % verbose - 'yes' means display output while running [ 'no' ]
22 %
23 % e.g., dag = learn_struct_K2(data, ns, order, 'scoring_fn', 'bic', 'params', [])
24 %
25 % To be backwards compatible with BNT2, you can also specify arguments as follows
26 % dag = learn_struct_K2(data, node_sizes, order, max_fan_in)
27 %
28 % This algorithm is described in
29 % - Cooper and Herskovits, "A Bayesian method for the induction of probabilistic
30 % networks from data", Machine Learning Journal 9:308--347, 1992
31
32 [n ncases] = size(data);
33
34 % set default params
35 type = cell(1,n);
36 params = cell(1,n);
37 for i=1:n
38 type{i} = 'tabular';
39 %params{i} = { 'prior', 1 };
40 params{i} = { 'prior_type', 'dirichlet', 'dirichlet_weight', 1 };
41 end
42 scoring_fn = 'bayesian';
43 discrete = 1:n;
44 clamped = zeros(n, ncases);
45
46 max_fan_in = n;
47 verbose = 0;
48
49 args = varargin;
50 nargs = length(args);
51 if length(args) > 0
52 if isstr(args{1})
53 for i=1:2:nargs
54 switch args{i},
55 case 'verbose', verbose = strcmp(args{i+1}, 'yes');
56 case 'max_fan_in', max_fan_in = args{i+1};
57 case 'scoring_fn', scoring_fn = args{i+1};
58 case 'type', type = args{i+1};
59 case 'discrete', discrete = args{i+1};
60 case 'clamped', clamped = args{i+1};
61 case 'params', if isempty(args{i+1}), params = cell(1,n); else params = args{i+1}; end
62 end
63 end
64 else
65 max_fan_in = args{1};
66 end
67 end
68
69 dag = zeros(n,n);
70
71 for i=1:n
72 ps = [];
73 j = order(i);
74 u = find(clamped(j,:)==0);
75 score = score_family(j, ps, type{j}, scoring_fn, ns, discrete, data(:,u), params{j});
76 if verbose, fprintf('\nnode %d, empty score %6.4f\n', j, score); end
77 done = 0;
78 while ~done & (length(ps) <= max_fan_in)
79 pps = mysetdiff(order(1:i-1), ps); % potential parents
80 nps = length(pps);
81 pscore = zeros(1, nps);
82 for pi=1:nps
83 p = pps(pi);
84 pscore(pi) = score_family(j, [ps p], type{j}, scoring_fn, ns, discrete, data(:,u), params{j});
85 if verbose, fprintf('considering adding %d to %d, score %6.4f\n', p, j, pscore(pi)); end
86 end
87 [best_pscore, best_p] = max(pscore);
88 best_p = pps(best_p);
89 if best_pscore > score
90 score = best_pscore;
91 ps = [ps best_p];
92 if verbose, fprintf('* adding %d to %d, score %6.4f\n', best_p, j, best_pscore); end
93 else
94 done = 1;
95 end
96 end
97 if ~isempty(ps) % need this check for matlab 5.2
98 dag(ps, j) = 1;
99 end
100 end
101
102
103
104