Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/bnt/inference/dynamic/@kalman_inf_engine/enter_evidence.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function [engine, loglik] = enter_evidence(engine, evidence, varargin) | |
2 % ENTER_EVIDENCE Add the specified evidence to the network (kalman) | |
3 % [engine, loglik] = enter_evidence(engine, evidence, ...) | |
4 % | |
5 % evidence{i,t} = [] if if X(i,t) is hidden, and otherwise contains its observed value (scalar or column vector) | |
6 % | |
7 % The following optional arguments can be specified in the form of name/value pairs: | |
8 % [default value in brackets] | |
9 % | |
10 % maximize - if 1, does max-product (same as sum-product for Gaussians!), else sum-product [0] | |
11 % filter - if 1, do filtering, else smoothing [0] | |
12 % | |
13 % e.g., engine = enter_evidence(engine, ev, 'maximize', 1) | |
14 | |
15 maximize = 0; | |
16 filter = 0; | |
17 | |
18 % parse optional params | |
19 args = varargin; | |
20 nargs = length(args); | |
21 if nargs > 0 | |
22 for i=1:2:nargs | |
23 switch args{i}, | |
24 case 'maximize', maximize = args{i+1}; | |
25 case 'filter', filter = args{i+1}; | |
26 otherwise, | |
27 error(['invalid argument name ' args{i}]); | |
28 end | |
29 end | |
30 end | |
31 | |
32 assert(~maximize); | |
33 | |
34 bnet = bnet_from_engine(engine); | |
35 n = length(bnet.intra); | |
36 onodes = bnet.observed; | |
37 hnodes = mysetdiff(1:n, onodes); | |
38 T = size(evidence, 2); | |
39 ns = bnet.node_sizes; | |
40 O = sum(ns(onodes)); | |
41 data = reshape(cat(1, evidence{onodes,:}), [O T]); | |
42 | |
43 A = engine.trans_mat; | |
44 C = engine.obs_mat; | |
45 Q = engine.trans_cov; | |
46 R = engine.obs_cov; | |
47 init_x = engine.init_state; | |
48 init_V = engine.init_cov; | |
49 | |
50 if filter | |
51 [x, V, VV, loglik] = kalman_filter(data, A, C, Q, R, init_x, init_V); | |
52 else | |
53 [x, V, VV, loglik] = kalman_smoother(data, A, C, Q, R, init_x, init_V); | |
54 end | |
55 | |
56 | |
57 % Wrap the posterior inside a potential, so it can be marginalized easily | |
58 engine.one_slice_marginal = cell(1,T); | |
59 engine.two_slice_marginal = cell(1,T); | |
60 ns(onodes) = 0; | |
61 ns(onodes+n) = 0; | |
62 ss = length(bnet.intra); | |
63 for t=1:T | |
64 dom = (1:n); | |
65 engine.one_slice_marginal{t} = mpot(dom+(t-1)*ss, ns(dom), 1, x(:,t), V(:,:,t)); | |
66 end | |
67 % for t=1:T-1 | |
68 % dom = (1:(2*n)); | |
69 % mu = [x(:,t); x(:,t)]; | |
70 % Sigma = [V(:,:,t) VV(:,:,t+1)'; | |
71 % VV(:,:,t+1) V(:,:,t+1)]; | |
72 % engine.two_slice_marginal{t} = mpot(dom+(t-1)*ss, ns(dom), 1, mu, Sigma); | |
73 % end | |
74 for t=2:T | |
75 %dom = (1:(2*n)); | |
76 current_slice = hnodes; | |
77 next_slice = hnodes + ss; | |
78 dom = [current_slice next_slice]; | |
79 mu = [x(:,t-1); x(:,t)]; | |
80 Sigma = [V(:,:,t-1) VV(:,:,t)'; | |
81 VV(:,:,t) V(:,:,t)]; | |
82 engine.two_slice_marginal{t-1} = mpot(dom+(t-2)*ss, ns(dom), 1, mu, Sigma); | |
83 end |