Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/bnt/general/mk_bnet.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function bnet = mk_bnet(dag, node_sizes, varargin) | |
2 % MK_BNET Make a Bayesian network. | |
3 % | |
4 % BNET = MK_BNET(DAG, NODE_SIZES, ...) makes a graphical model with an arc from i to j iff DAG(i,j) = 1. | |
5 % Thus DAG is the adjacency matrix for a directed acyclic graph. | |
6 % The nodes are assumed to be in topological order. Use TOPOLOGICAL_SORT if necessary. | |
7 % | |
8 % node_sizes(i) is the number of values node i can take on, | |
9 % or the length of node i if i is a continuous-valued vector. | |
10 % node_sizes(i) = 1 if i is a utility node. | |
11 % | |
12 % Below are the names of optional arguments [and their default value in brackets]. | |
13 % Pass as 'PropertyName1', PropertyValue1, 'PropertyName2', PropertyValue2, ... | |
14 % | |
15 % discrete - the list of nodes which are discrete random variables [1:N] | |
16 % equiv_class - equiv_class(i)=j means node i gets its params from CPD{j} [1:N] | |
17 % observed - the list of nodes which will definitely be observed in every case [ [] ] | |
18 % 'names' - a cell array of strings to be associated with nodes 1:n [{}] | |
19 % This creates an associative array, so you write e.g. | |
20 % 'evidence(bnet.names{'bar'}) = 42' instead of 'evidence(2} = 42' | |
21 % assuming names = { 'foo', 'bar', ...}. | |
22 % | |
23 % e.g., bnet = mk_bnet(dag, ns, 'discrete', [1 3]) | |
24 % | |
25 % For backwards compatibility with BNT2, you can also specify the parameters in the following order | |
26 % bnet = mk_bnet(dag, node_sizes, discrete_nodes, equiv_class) | |
27 | |
28 n = length(dag); | |
29 | |
30 % default values for parameters | |
31 bnet.equiv_class = 1:n; | |
32 bnet.dnodes = 1:n; % discrete | |
33 bnet.observed = []; | |
34 bnet.names = {}; | |
35 | |
36 if nargin >= 3 | |
37 args = varargin; | |
38 nargs = length(args); | |
39 if ~isstr(args{1}) | |
40 if nargs >= 1, bnet.dnodes = args{1}; end | |
41 if nargs >= 2, bnet.equiv_class = args{2}; end | |
42 else | |
43 for i=1:2:nargs | |
44 switch args{i}, | |
45 case 'equiv_class', bnet.equiv_class = args{i+1}; | |
46 case 'discrete', bnet.dnodes = args{i+1}; | |
47 case 'observed', bnet.observed = args{i+1}; | |
48 case 'names', bnet.names = assocarray(args{i+1}, num2cell(1:n)); | |
49 otherwise, | |
50 error(['invalid argument name ' args{i}]); | |
51 end | |
52 end | |
53 end | |
54 end | |
55 | |
56 bnet.observed = sort(bnet.observed); % for comparing sets | |
57 bnet.hidden = mysetdiff(1:n, bnet.observed(:)'); | |
58 bnet.hidden_bitv = zeros(1,n); | |
59 bnet.hidden_bitv(bnet.hidden) = 1; | |
60 bnet.dag = dag; | |
61 bnet.node_sizes = node_sizes(:)'; | |
62 | |
63 bnet.cnodes = mysetdiff(1:n, bnet.dnodes); | |
64 % too many functions refer to cnodes to rename it to cts_nodes - | |
65 % We hope it won't be confused with chance nodes! | |
66 | |
67 bnet.parents = cell(1,n); | |
68 for i=1:n | |
69 bnet.parents{i} = parents(dag, i); | |
70 end | |
71 | |
72 E = max(bnet.equiv_class); | |
73 mem = cell(1,E); | |
74 for i=1:n | |
75 e = bnet.equiv_class(i); | |
76 mem{e} = [mem{e} i]; | |
77 end | |
78 bnet.members_of_equiv_class = mem; | |
79 | |
80 bnet.CPD = cell(1, E); | |
81 | |
82 bnet.rep_of_eclass = zeros(1,E); | |
83 for e=1:E | |
84 mems = bnet.members_of_equiv_class{e}; | |
85 bnet.rep_of_eclass(e) = mems(1); | |
86 end | |
87 | |
88 directed = 1; | |
89 if ~acyclic(dag,directed) | |
90 error('graph must be acyclic') | |
91 end | |
92 | |
93 bnet.order = topological_sort(bnet.dag); |