Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/bnt/examples/static/learn1.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 % Lawn sprinker example from Russell and Norvig p454 | |
2 % See www.cs.berkeley.edu/~murphyk/Bayes/usage.html for details. | |
3 | |
4 N = 4; | |
5 dag = zeros(N,N); | |
6 C = 1; S = 2; R = 3; W = 4; | |
7 dag(C,[R S]) = 1; | |
8 dag(R,W) = 1; | |
9 dag(S,W)=1; | |
10 | |
11 false = 1; true = 2; | |
12 ns = 2*ones(1,N); % binary nodes | |
13 | |
14 bnet = mk_bnet(dag, ns); | |
15 bnet.CPD{C} = tabular_CPD(bnet, C, [0.5 0.5]); | |
16 bnet.CPD{R} = tabular_CPD(bnet, R, [0.8 0.2 0.2 0.8]); | |
17 bnet.CPD{S} = tabular_CPD(bnet, S, [0.5 0.9 0.5 0.1]); | |
18 bnet.CPD{W} = tabular_CPD(bnet, W, [1 0.1 0.1 0.01 0 0.9 0.9 0.99]); | |
19 | |
20 CPT = cell(1,N); | |
21 for i=1:N | |
22 s=struct(bnet.CPD{i}); % violate object privacy | |
23 CPT{i}=s.CPT; | |
24 end | |
25 | |
26 % Generate training data | |
27 nsamples = 50; | |
28 samples = cell(N, nsamples); | |
29 for i=1:nsamples | |
30 samples(:,i) = sample_bnet(bnet); | |
31 end | |
32 data = cell2num(samples); | |
33 | |
34 % Make a tabula rasa | |
35 bnet2 = mk_bnet(dag, ns); | |
36 seed = 0; | |
37 rand('state', seed); | |
38 bnet2.CPD{C} = tabular_CPD(bnet2, C, 'clamped', 1, 'CPT', [0.5 0.5], ... | |
39 'prior_type', 'dirichlet', 'dirichlet_weight', 0); | |
40 bnet2.CPD{R} = tabular_CPD(bnet2, R, 'prior_type', 'dirichlet', 'dirichlet_weight', 0); | |
41 bnet2.CPD{S} = tabular_CPD(bnet2, S, 'prior_type', 'dirichlet', 'dirichlet_weight', 0); | |
42 bnet2.CPD{W} = tabular_CPD(bnet2, W, 'prior_type', 'dirichlet', 'dirichlet_weight', 0); | |
43 | |
44 | |
45 % Find MLEs from fully observed data | |
46 bnet4 = learn_params(bnet2, samples); | |
47 | |
48 % Bayesian updating with 0 prior is equivalent to ML estimation | |
49 bnet5 = bayes_update_params(bnet2, samples); | |
50 | |
51 CPT4 = cell(1,N); | |
52 for i=1:N | |
53 s=struct(bnet4.CPD{i}); % violate object privacy | |
54 CPT4{i}=s.CPT; | |
55 end | |
56 | |
57 CPT5 = cell(1,N); | |
58 for i=1:N | |
59 s=struct(bnet5.CPD{i}); % violate object privacy | |
60 CPT5{i}=s.CPT; | |
61 assert(approxeq(CPT5{i}, CPT4{i})) | |
62 end | |
63 | |
64 | |
65 if 1 | |
66 % Find MLEs from partially observed data | |
67 | |
68 % hide 50% of the nodes | |
69 samplesH = samples; | |
70 hide = rand(N, nsamples) > 0.5; | |
71 [I,J]=find(hide); | |
72 for k=1:length(I) | |
73 samplesH{I(k), J(k)} = []; | |
74 end | |
75 | |
76 engine = jtree_inf_engine(bnet2); | |
77 max_iter = 5; | |
78 [bnet6, LL] = learn_params_em(engine, samplesH, max_iter); | |
79 | |
80 CPT6 = cell(1,N); | |
81 for i=1:N | |
82 s=struct(bnet6.CPD{i}); % violate object privacy | |
83 CPT6{i}=s.CPT; | |
84 end | |
85 | |
86 end |