comparison toolboxes/FullBNT-1.0.7/bnt/examples/static/fgraph/fg2.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 % make a factor graph corresponding to an HMM, where we absorb the evidence up front,
2 % and then eliminate the observed nodes.
3 % Compare this with not absorbing the evidence.
4
5 seed = 1;
6 rand('state', seed);
7 randn('state', seed);
8
9 T = 3;
10 Q = 3;
11 O = 2;
12 cts_obs = 0;
13 param_tying = 1;
14 bnet = mk_hmm_bnet(T, Q, O, cts_obs, param_tying);
15 N = 2*T;
16 onodes = bnet.observed;
17 hnodes = mysetdiff(1:N, onodes);
18
19 data = sample_bnet(bnet);
20
21 init_factor = bnet.CPD{1};
22 obs_factor = bnet.CPD{3};
23 edge_factor = bnet.CPD{2}; % trans matrix
24
25 nfactors = T;
26 nvars = T; % hidden only
27 G = zeros(nvars, nfactors);
28 G(1,1) = 1;
29 for t=1:T-1
30 G(t:t+1, t+1)=1;
31 end
32
33 node_sizes = Q*ones(1,T);
34
35 % We tie params as follows:
36 % the first hidden node use init_factor (number 1)
37 % all hidden nodes on the backbone use edge_factor (number 2)
38 % all observed nodes use the same factor, namely obs_factor
39
40 small_fg = mk_fgraph_given_ev(G, node_sizes, {init_factor, edge_factor}, {obs_factor}, data(onodes), ...
41 'equiv_class', [1 2*ones(1,T-1)], 'ev_equiv_class', ones(1,T));
42
43 small_bnet = fgraph_to_bnet(small_fg);
44
45 % don't pre-process evidence
46 big_fg = bnet_to_fgraph(bnet);
47 big_bnet = fgraph_to_bnet(big_fg);
48
49
50
51 engine = {};
52 engine{1} = jtree_inf_engine(bnet);
53 engine{2} = belprop_fg_inf_engine(small_fg, 'max_iter', 2*T);
54 engine{3} = jtree_inf_engine(small_bnet);
55 engine{4} = belprop_fg_inf_engine(big_fg, 'max_iter', 3*T);
56 engine{5} = jtree_inf_engine(big_bnet);
57 nengines = length(engine);
58
59
60 % on BN, use the original evidence
61 evidence = cell(1, 2*T);
62 evidence(onodes) = data(onodes);
63 tic; [engine{1}, ll(1)] = enter_evidence(engine{1}, evidence); toc
64
65
66 % on small_fg, we have already included the evidence
67 evidence = cell(1,T);
68 tic; [engine{2}, ll(2)] = enter_evidence(engine{2}, evidence); toc
69
70
71 % on small_bnet, we must add evidence to the dummy nodes
72 V = small_fg.nvars;
73 dummy = V+1:V+small_fg.nfactors;
74 N = max(dummy);
75 evidence = cell(1, N);
76 evidence(dummy) = {1};
77 tic; [engine{3}, ll(3)] = enter_evidence(engine{3}, evidence); toc
78
79
80 % on big_fg, use the original evidence
81 evidence = cell(1, 2*T);
82 evidence(onodes) = data(onodes);
83 tic; [engine{4}, ll(4)] = enter_evidence(engine{4}, evidence); toc
84
85
86 % on big_bnet, we must add evidence to the dummy nodes
87 V = big_fg.nvars;
88 assert(V == 2*T);
89 dummy = V+1:V+big_fg.nfactors;
90 N = max(dummy);
91 evidence = cell(1, N);
92 evidence(onodes) = data(onodes);
93 evidence(dummy) = {1};
94 tic; [engine{5}, ll(5)] = enter_evidence(engine{5}, evidence); toc
95
96
97 marg = zeros(T, nengines, Q); % marg(t,e,:)
98 for t=1:T
99 for e=1:nengines
100 m = marginal_nodes(engine{e}, t);
101 marg(t,e,:) = m.T;
102 end
103 end
104 marg(:,:,1)