comparison toolboxes/FullBNT-1.0.7/bnt/examples/static/Brutti/Belief_hmdt.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 % Sigmoid Belief Hidden Markov Decision Tree (Jordan/Gharhamani 1996)
2 %
3 clear all;
4 %clc;
5 rand('state',0); randn('state',0);
6 X = 1; Q1 = 2; Q2 = 3; Y = 4;
7 % intra time-slice graph
8 intra=zeros(4);
9 intra(X,[Q1 Q2 Y])=1;
10 intra(Q1,[Q2 Y])=1;
11 intra(Q2, Y)=1;
12 % inter time-slice graph
13 inter=zeros(4);
14 inter(Q1,Q1)=1;
15 inter(Q2,Q2)=1;
16
17 ns = [1 2 3 1];
18 dnodes = [2 3];
19 eclass1 = [1 2 3 4];
20 eclass2 = [1 5 6 4];
21 bnet = mk_dbn(intra, inter, ns, dnodes, eclass1, eclass2);
22
23 bnet.CPD{1} = root_CPD(bnet, 1);
24 % =========================================
25 bnet.CPD{2} = softmax_CPD(bnet, 2);
26 bnet.CPD{3} = softmax_CPD(bnet, 3, 'discrete', [2]);
27 bnet.CPD{5} = softmax_CPD(bnet, 6);
28 bnet.CPD{6} = softmax_CPD(bnet, 7, 'discrete', [3 6]);
29 % =========================================
30 bnet.CPD{4} = gaussian_CPD(bnet, 4);
31
32 % make some data
33 T=20;
34 cases = cell(4, T);
35 cases(1,:)=num2cell(round(rand(1,T)*2)+1);
36 %cases(2,:)=num2cell(round(rand(1,T))+1);
37 %cases(3,:)=num2cell(round(rand(1,T)*2)+1);
38 cases(4,:)=num2cell(rand(1,T));
39
40 engine = bk_inf_engine(bnet, 'exact', [1 2 3 4]);
41
42 % log lik before learning
43 [engine, loglik] = enter_evidence(engine, cases);
44
45 % do learning
46 ev=cell(1,1);
47 ev{1}=cases;
48 [bnet2, LL2] = learn_params_dbn_em(engine, ev, 10);