comparison toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/cmp_learning_dbn.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function [time, CPD, LL, cases] = cmp_learning_dbn(bnet, engine, T, varargin)
2 % CMP_LEARNING_DBN Compare a bunch of inference engines by learning a DBN
3 % function [time, CPD, LL, cases] = cmp_learning_dbn(bnet, engine, exact, T, ncases, max_iter)
4 %
5 % engine{i} is the i'th inference engine.
6 % time(e) = elapsed time for doing inference with engine e
7 % CPD{e,c} is the learned CPD for eclass c in engine e
8 % LL{e} is the learning curve for engine e
9 % cases{i} is the i'th training case
10 %
11 % The list below gives optional arguments [default value in brackets].
12 %
13 % exact - specifies which engines do exact inference [ 1:length(engine) ]
14 % check_ll - 1 means we check that the log-likelihoods are correct [1]
15 % ncases - num. random training cases [2]
16 % max_iter - max. num EM iterations [2]
17
18 % set default params
19 exact = 1:length(engine);
20 check_ll = 1;
21 ncases = 2;
22 max_iter = 2;
23
24 args = varargin;
25 nargs = length(args);
26 for i=1:2:nargs
27 switch args{i},
28 case 'exact', exact = args{i+1};
29 case 'check_ll', check_ll = args{i+1};
30 case 'ncases', ncases = args{i+1};
31 case 'max_iter', max_iter = args{i+1};
32 otherwise,
33 error(['unrecognized argument ' args{i}])
34 end
35 end
36
37 E = length(engine);
38 ss = length(bnet.intra);
39 onodes = bnet.observed;
40
41 cases = cell(1, ncases);
42 for i=1:ncases
43 ev = sample_dbn(bnet, 'length', T);
44 cases{i} = cell(ss,T);
45 cases{i}(onodes,:) = ev(onodes, :);
46 end
47
48 LL = cell(1,E);
49 time = zeros(1,E);
50 for i=1:E
51 tic
52 [bnet2{i}, LL{i}] = learn_params_dbn_em(engine{i}, cases, 'max_iter', max_iter);
53 time(i) = toc;
54 fprintf('engine %d took %6.4f seconds\n', i, time(i));
55 end
56
57 ref = exact(1); % reference
58 cmp = mysetdiff(exact, ref);
59 if check_ll
60 for i=cmp(:)'
61 if ~approxeq(LL{ref}, LL{i})
62 error(['engine ' num2str(i) ' has wrong ll'])
63 end
64 end
65 end
66
67 nCPDs = length(bnet.CPD);
68 CPD = cell(E, nCPDs);
69 tabular = zeros(1, nCPDs);
70 for i=1:E
71 temp = bnet2{i};
72 for c=1:nCPDs
73 tabular(c) = isa(temp.CPD{c}, 'tabular_CPD');
74 CPD{i,c} = struct(temp.CPD{c});
75 end
76 end
77
78 for i=cmp(:)'
79 for c=1:nCPDs
80 if tabular(c)
81 assert(approxeq(CPD{i,c}.CPT, CPD{ref,c}.CPT));
82 else
83 assert(approxeq(CPD{i,c}.mean, CPD{ref,c}.mean));
84 assert(approxeq(CPD{i,c}.cov, CPD{ref,c}.cov));
85 assert(approxeq(CPD{i,c}.weights, CPD{ref,c}.weights));
86 end
87 end
88 end
89