Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/cmp_learning_dbn.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function [time, CPD, LL, cases] = cmp_learning_dbn(bnet, engine, T, varargin) | |
2 % CMP_LEARNING_DBN Compare a bunch of inference engines by learning a DBN | |
3 % function [time, CPD, LL, cases] = cmp_learning_dbn(bnet, engine, exact, T, ncases, max_iter) | |
4 % | |
5 % engine{i} is the i'th inference engine. | |
6 % time(e) = elapsed time for doing inference with engine e | |
7 % CPD{e,c} is the learned CPD for eclass c in engine e | |
8 % LL{e} is the learning curve for engine e | |
9 % cases{i} is the i'th training case | |
10 % | |
11 % The list below gives optional arguments [default value in brackets]. | |
12 % | |
13 % exact - specifies which engines do exact inference [ 1:length(engine) ] | |
14 % check_ll - 1 means we check that the log-likelihoods are correct [1] | |
15 % ncases - num. random training cases [2] | |
16 % max_iter - max. num EM iterations [2] | |
17 | |
18 % set default params | |
19 exact = 1:length(engine); | |
20 check_ll = 1; | |
21 ncases = 2; | |
22 max_iter = 2; | |
23 | |
24 args = varargin; | |
25 nargs = length(args); | |
26 for i=1:2:nargs | |
27 switch args{i}, | |
28 case 'exact', exact = args{i+1}; | |
29 case 'check_ll', check_ll = args{i+1}; | |
30 case 'ncases', ncases = args{i+1}; | |
31 case 'max_iter', max_iter = args{i+1}; | |
32 otherwise, | |
33 error(['unrecognized argument ' args{i}]) | |
34 end | |
35 end | |
36 | |
37 E = length(engine); | |
38 ss = length(bnet.intra); | |
39 onodes = bnet.observed; | |
40 | |
41 cases = cell(1, ncases); | |
42 for i=1:ncases | |
43 ev = sample_dbn(bnet, 'length', T); | |
44 cases{i} = cell(ss,T); | |
45 cases{i}(onodes,:) = ev(onodes, :); | |
46 end | |
47 | |
48 LL = cell(1,E); | |
49 time = zeros(1,E); | |
50 for i=1:E | |
51 tic | |
52 [bnet2{i}, LL{i}] = learn_params_dbn_em(engine{i}, cases, 'max_iter', max_iter); | |
53 time(i) = toc; | |
54 fprintf('engine %d took %6.4f seconds\n', i, time(i)); | |
55 end | |
56 | |
57 ref = exact(1); % reference | |
58 cmp = mysetdiff(exact, ref); | |
59 if check_ll | |
60 for i=cmp(:)' | |
61 if ~approxeq(LL{ref}, LL{i}) | |
62 error(['engine ' num2str(i) ' has wrong ll']) | |
63 end | |
64 end | |
65 end | |
66 | |
67 nCPDs = length(bnet.CPD); | |
68 CPD = cell(E, nCPDs); | |
69 tabular = zeros(1, nCPDs); | |
70 for i=1:E | |
71 temp = bnet2{i}; | |
72 for c=1:nCPDs | |
73 tabular(c) = isa(temp.CPD{c}, 'tabular_CPD'); | |
74 CPD{i,c} = struct(temp.CPD{c}); | |
75 end | |
76 end | |
77 | |
78 for i=cmp(:)' | |
79 for c=1:nCPDs | |
80 if tabular(c) | |
81 assert(approxeq(CPD{i,c}.CPT, CPD{ref,c}.CPT)); | |
82 else | |
83 assert(approxeq(CPD{i,c}.mean, CPD{ref,c}.mean)); | |
84 assert(approxeq(CPD{i,c}.cov, CPD{ref,c}.cov)); | |
85 assert(approxeq(CPD{i,c}.weights, CPD{ref,c}.weights)); | |
86 end | |
87 end | |
88 end | |
89 |