comparison toolboxes/FullBNT-1.0.7/bnt/CPDs/@hhmmF_CPD/hhmmF_CPD.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function CPD = hhmmF_CPD(bnet, self, Qself, Fbelow, varargin)
2 % HHMMF_CPD Make the CPD for an F node in a hierarchical HMM
3 % CPD = hhmmF_CPD(bnet, self, Qself, Fbelow, ...)
4 %
5 % Qps
6 % \
7 % \
8 % Fself
9 % / |
10 % / |
11 % Qself Fbelow
12 %
13 % We assume nodes are ordered (numbered) as follows: Qps, Q, Fbelow, F
14 % All nodes numbers should be from slice 1.
15 %
16 % If Fbelow if missing, this becomes a regular tabular_CPD.
17 % Qps may be omitted.
18 %
19 % optional args [defaults]
20 %
21 % Qps - node numbers.
22 % termprob - termprob(k,i,2) = prob finishing given Q(d)=i and Q(1:d-1)=k [ finish in last state wp 0.9]
23 %
24 % hhmmF_CPD is a subclass of tabular_CPD so we inherit inference methods like CPD_to_pot, etc.
25 %
26 % We create an isolated tabular_CPD with no F parent to learn termprob
27 % so we can avail of e.g., entropic or Dirichlet priors.
28 %
29 % For details, see "Linear-time inference in hierarchical HMMs", Murphy and Paskin, NIPS'01.
30
31
32
33 Qps = [];
34 % get parents
35 for i=1:2:length(varargin)
36 switch varargin{i},
37 case 'Qps', Qps = varargin{i+1};
38 end
39 end
40
41 ns = bnet.node_sizes(:);
42 Qsz = ns(Qself);
43 Qpsz = prod(ns(Qps));
44 CPD.Qsz = Qsz;
45 CPD.Qpsz = Qpsz;
46
47 ps = parents(bnet.dag, self);
48 CPD.Fbelow_ndx = find_equiv_posns(Fbelow, ps);
49 CPD.Qps_ndx = find_equiv_posns(Qps, ps);
50 CPD.Qself_ndx = find_equiv_posns(Qself, ps);
51
52 % set default arguments
53 p = 0.9;
54 %termprob(k,i,t) Might terminate if i=Qsz; will not terminate if i<Qsz
55 termprob = zeros(Qpsz, Qsz, 2);
56 termprob(:, Qsz, 2) = p;
57 termprob(:, Qsz, 1) = 1-p;
58 termprob(:, 1:(Qsz-1), 1) = 1;
59
60 for i=1:2:length(varargin)
61 switch varargin{i},
62 case 'termprob', termprob = varargin{i+1};
63 end
64 end
65
66 CPD.sub_CPD_term = mk_isolated_tabular_CPD([Qpsz Qsz 2], {'CPT', termprob});
67 S = struct(CPD.sub_CPD_term);
68 CPD.termprob = S.CPT;
69
70 CPD = class(CPD, 'hhmmF_CPD', tabular_CPD(bnet, self));
71
72 CPD = update_CPT(CPD);
73