Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/KPMtools/plotcov3.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 % PLOTCOV3 - Plots a covariance ellipsoid with axes for a trivariate | |
2 % Gaussian distribution. | |
3 % | |
4 % Usage: | |
5 % [h, s] = plotcov3(mu, Sigma[, OPTIONS]); | |
6 % | |
7 % Inputs: | |
8 % mu - a 3 x 1 vector giving the mean of the distribution. | |
9 % Sigma - a 3 x 3 symmetric positive semi-definite matrix giving | |
10 % the covariance of the distribution (or the zero matrix). | |
11 % | |
12 % Options: | |
13 % 'conf' - a scalar between 0 and 1 giving the confidence | |
14 % interval (i.e., the fraction of probability mass to | |
15 % be enclosed by the ellipse); default is 0.9. | |
16 % 'num-pts' - if the value supplied is n, then (n + 1)^2 points | |
17 % to be used to plot the ellipse; default is 20. | |
18 % 'plot-opts' - a cell vector of arguments to be handed to PLOT3 | |
19 % to contol the appearance of the axes, e.g., | |
20 % {'Color', 'g', 'LineWidth', 1}; the default is {} | |
21 % 'surf-opts' - a cell vector of arguments to be handed to SURF | |
22 % to contol the appearance of the ellipsoid | |
23 % surface; a nice possibility that yields | |
24 % transparency is: {'EdgeAlpha', 0, 'FaceAlpha', | |
25 % 0.1, 'FaceColor', 'g'}; the default is {} | |
26 % | |
27 % Outputs: | |
28 % h - a vector of handles on the axis lines | |
29 % s - a handle on the ellipsoid surface object | |
30 % | |
31 % See also: PLOTCOV2 | |
32 | |
33 % Copyright (C) 2002 Mark A. Paskin | |
34 % | |
35 % This program is free software; you can redistribute it and/or modify | |
36 % it under the terms of the GNU General Public License as published by | |
37 % the Free Software Foundation; either version 2 of the License, or | |
38 % (at your option) any later version. | |
39 % | |
40 % This program is distributed in the hope that it will be useful, but | |
41 % WITHOUT ANY WARRANTY; without even the implied warranty of | |
42 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
43 % General Public License for more details. | |
44 % | |
45 % You should have received a copy of the GNU General Public License | |
46 % along with this program; if not, write to the Free Software | |
47 % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 | |
48 % USA. | |
49 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
50 | |
51 function [h, s] = plotcov3(mu, Sigma, varargin) | |
52 | |
53 if size(Sigma) ~= [3 3], error('Sigma must be a 3 by 3 matrix'); end | |
54 if length(mu) ~= 3, error('mu must be a 3 by 1 vector'); end | |
55 | |
56 [p, ... | |
57 n, ... | |
58 plot_opts, ... | |
59 surf_opts] = process_options(varargin, 'conf', 0.9, ... | |
60 'num-pts', 20, ... | |
61 'plot-opts', {}, ... | |
62 'surf-opts', {}); | |
63 h = []; | |
64 holding = ishold; | |
65 if (Sigma == zeros(3, 3)) | |
66 z = mu; | |
67 else | |
68 % Compute the Mahalanobis radius of the ellipsoid that encloses | |
69 % the desired probability mass. | |
70 k = conf2mahal(p, 3); | |
71 % The axes of the covariance ellipse are given by the eigenvectors of | |
72 % the covariance matrix. Their lengths (for the ellipse with unit | |
73 % Mahalanobis radius) are given by the square roots of the | |
74 % corresponding eigenvalues. | |
75 if (issparse(Sigma)) | |
76 [V, D] = eigs(Sigma); | |
77 else | |
78 [V, D] = eig(Sigma); | |
79 end | |
80 if (any(diag(D) < 0)) | |
81 error('Invalid covariance matrix: not positive semi-definite.'); | |
82 end | |
83 % Compute the points on the surface of the ellipsoid. | |
84 t = linspace(0, 2*pi, n); | |
85 [X, Y, Z] = sphere(n); | |
86 u = [X(:)'; Y(:)'; Z(:)']; | |
87 w = (k * V * sqrt(D)) * u; | |
88 z = repmat(mu(:), [1 (n + 1)^2]) + w; | |
89 | |
90 % Plot the axes. | |
91 L = k * sqrt(diag(D)); | |
92 h = plot3([mu(1); mu(1) + L(1) * V(1, 1)], ... | |
93 [mu(2); mu(2) + L(1) * V(2, 1)], ... | |
94 [mu(3); mu(3) + L(1) * V(3, 1)], plot_opts{:}); | |
95 hold on; | |
96 h = [h; plot3([mu(1); mu(1) + L(2) * V(1, 2)], ... | |
97 [mu(2); mu(2) + L(2) * V(2, 2)], ... | |
98 [mu(3); mu(3) + L(2) * V(3, 2)], plot_opts{:})]; | |
99 h = [h; plot3([mu(1); mu(1) + L(3) * V(1, 3)], ... | |
100 [mu(2); mu(2) + L(3) * V(2, 3)], ... | |
101 [mu(3); mu(3) + L(3) * V(3, 3)], plot_opts{:})]; | |
102 end | |
103 | |
104 s = surf(reshape(z(1, :), [(n + 1) (n + 1)]), ... | |
105 reshape(z(2, :), [(n + 1) (n + 1)]), ... | |
106 reshape(z(3, :), [(n + 1) (n + 1)]), ... | |
107 surf_opts{:}); | |
108 | |
109 if (~holding) hold off; end |