comparison toolboxes/FullBNT-1.0.7/KPMstats/weightedRegression.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function [a, b, error] = weightedRegression(x, z, w)
2 % [a , b, error] = fitRegression(x, z, w);
3 % % Weighted scalar linear regression
4 %
5 % Find a,b to minimize
6 % error = sum(w * |z - (a*x + b)|^2)
7 % and x(i) is a scalar
8
9 if nargin < 3, w = ones(1,length(x)); end
10
11 w = w(:)';
12 x = x(:)';
13 z = z(:)';
14
15 W = sum(w);
16 Y = sum(w .* z);
17 YY = sum(w .* z .* z);
18 YTY = sum(w .* z .* z);
19 X = sum(w .* x);
20 XX = sum(w .* x .* x);
21 XY = sum(w .* x .* z);
22
23 [b, a] = clg_Mstep_simple(W, Y, YY, YTY, X, XX, XY);
24 error = sum(w .* (z - (a*x + b)).^2 );
25
26 if 0
27 % demo
28 seed = 1;
29 rand('state', seed); randn('state', seed);
30 x = -10:10;
31 N = length(x);
32 noise = randn(1,N);
33 aTrue = rand(1,1);
34 bTrue = rand(1,1);
35 z = aTrue*x + bTrue + noise;
36
37 w = ones(1,N);
38 [a, b, err] = weightedRegression(x, z, w);
39
40 b2=regress(z(:), [x(:) ones(N,1)]);
41 assert(approxeq(b,b2(2)))
42 assert(approxeq(a,b2(1)))
43
44 % Make sure we go through x(15) perfectly
45 w(15) = 1000;
46 [aW, bW, errW] = weightedRegression(x, z, w);
47
48 figure;
49 plot(x, z, 'ro')
50 hold on
51 plot(x, a*x+b, 'bx-')
52 plot(x, aW*x+bW, 'gs-')
53 title(sprintf('a=%5.2f, aHat=%5.2f, aWHat=%5.3f, b=%5.2f, bHat=%5.2f, bWHat=%5.3f, err=%5.3f, errW=%5.3f', ...
54 aTrue, a, aW, bTrue, b, bW, err, errW))
55 legend('truth', 'ls', 'wls')
56
57 end
58