Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/KPMstats/mixgauss_classifier_train.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function mixgauss = mixgauss_classifier_train(trainFeatures, trainLabels, nc, varargin) | |
2 % function mixgauss = mixgauss_classifier_train(trainFeatures, trainLabels, nclusters, varargin) | |
3 % trainFeatures(:,i) for i'th example | |
4 % trainLabels should be 0,1 | |
5 % To evaluate performance on a tets set, use | |
6 % mixgauss = mixgauss_classifier_train(trainFeatures, trainLabels, nc, 'testFeatures', tf, 'testLabels', tl) | |
7 | |
8 [testFeatures, testLabels, max_iter, thresh, cov_type, mu, Sigma, priorC, method, ... | |
9 cov_prior, verbose, prune_thresh] = process_options(... | |
10 varargin, 'testFeatures', [], 'testLabels', [], ... | |
11 'max_iter', 10, 'thresh', 0.01, 'cov_type', 'diag', ... | |
12 'mu', [], 'Sigma', [], 'priorC', [], 'method', 'kmeans', ... | |
13 'cov_prior', [], 'verbose', 0, 'prune_thresh', 0); | |
14 | |
15 Nclasses = 2; % max([trainLabels testLabels]) + 1; | |
16 | |
17 pos = find(trainLabels == 1); | |
18 neg = find(trainLabels == 0); | |
19 | |
20 if verbose, fprintf('fitting pos\n'); end | |
21 [mixgauss.pos.mu, mixgauss.pos.Sigma, mixgauss.pos.prior] = ... | |
22 mixgauss_em(trainFeatures(:, pos), nc, varargin{:}); | |
23 | |
24 if verbose, fprintf('fitting neg\n'); end | |
25 [mixgauss.neg.mu, mixgauss.neg.Sigma, mixgauss.neg.prior] = ... | |
26 mixgauss_em(trainFeatures(:, neg), nc, varargin{:}); | |
27 | |
28 | |
29 if ~isempty(priorC) | |
30 mixgauss.priorC = priorC; | |
31 else | |
32 mixgauss.priorC = normalize([length(pos) length(neg)]); | |
33 end |